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Abstract 

The influence of the heterogeneous second-phase particle structure and 

applied loading conditions on the ductile spall response of a model two-phase 

material was investigated. Quantitative metallography, three-dimensional (3D) 

meso-scale simulations (MSS), and small-scale spall experiments provided the 

foundation for this study. Nodular ductile iron (NDI) was selected as the model 

two-phase material for this study because it contains a large and readily 

identifiable second- phase particle population. Second-phase particles serve as 

the primary void nucleation sites in NDI and are, therefore, central to its ductile 

spall response.  

A mathematical model was developed for the NDI second-phase volume 

fraction that accounted for the the non-uniform particle size and spacing 

distributions within the framework of a length-scale dependent Gaussian 

probability distribution function (PDF). This model was based on novel multi-

scale sampling measurements. A methodology was also developed for the 

computer generation of representative particle structures based on their 

mathematical description, enabling 3D MSS.  

MSS were used to investigate the effects of second-phase particle volume 

fraction and particle size, loading conditions, and physical domain size of 

simulation on the ductile spall response of a model two-phase material. MSS 

results reinforce existing model predictions, where the spall strength metric 

(SSM) logarithmically decreases with increasing particle volume fraction. While 

SSM predictions are nearly independent of applied load conditions at lower 
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loading rates, which is consistent with previous studies, loading dependencies 

are observed at higher loading rates. There is also a logarithmic decrease in 

SSM for increasing (initial) void size, as well. A model was developed to account 

for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-

specific case, the probabilistic particle volume fraction model.  

Small-scale spall experiments were designed and executed for the 

purpose of validating closely-coupled 3D MSS. While the spall strength is nearly 

independent of specimen thickness, the fragment morphology varies widely. 

Detailed MSS demonstrate that the interactions between the tensile release 

waves are altered by specimen thickness and that these interactions are 

primarily responsible for fragment formation. MSS also provided insights on the 

regional amplification of damage, which enables the development of predictive 

void evolution models.  
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1.0  Introduction to the spall of ductile metals 

A consequence of impulsive loading, e.g., loading due to high speed 

impacts or explosive detonation, on ductile metals is spall fracture. The initial 

impulsive loading results in compressive stress waves that propagate towards 

the specimen free surfaces. At the free surfaces, the compressive wave is 

reflected, changes signs, and develops into a tensile release wave. Spall fracture 

can result from the intersection of tensile release waves or from a single, 

relatively larger tensile release wave. At the microscopic level, spall fracture is 

characterized by the rapid nucleation, growth and coalescence of voids in a 

narrow band. Voids can nucleate at inclusions, second-phase particles, grain 

boundaries or other microstructural features. Voids grow under tensile loading 

and coalesce via impingement or localized strain bands. Figure 1.1 illustrates the 

growth and coalescence of voids in a ductile metal under dynamic tensile 

loading. Material (void) damage is depicted as a relatively localized process and 

spall fracture occurs from void-linking under continued loading.  

1.1 Review of spall fracture in ductile metals  

Hopkinson [1914] was the first to investigate spall and the loading required 

to produce it. He described the spall fractures in mild steel as having a brittle 

appearance since it lacked significant plastic deformation and contrasted this 

with the relative ductility under quasistatic loading conditions. Nearly four 

decades passed before Rinehart [1952] systematically explored spall in steel, 

brass, copper and aluminum alloys. He found that a critical value of tensile stress 

was required to produce spall and surmised that it was an intrinsic material 
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quantity. Subsequent experimental studies have demonstrated that the loading 

profile [Tuler and Butcher 1968; Barbee et al. 1972; Davison and Stevens 1972; 

Cochran and Banner 1977], and temperature [Kanel et al. 1997, Duffy and 

Ahrens 1994] influence the spall strength in ductile metals. Fewer studies have 

investigated the role of microstructure on ductile spall. While grain size [Christy et 

al. 1986; Minich et al. 2004] and purity levels [Rivas et al. 2000] have been 

investigated, there have been no systematic correlations between these 

microstructural features and void nucleation sites.  

Analytical spall modeling has traditionally been focused on the dynamic 

growth of an isolated void under hydrostatic loading [Poritsky 1952; Carroll and 

Holt 1972; Johnson 1981; Ortiz and Molinari 1992; Wu et al. 2003], axisymmetric 

loading [Banks-Sills and Budiansky 1982], and general load triaxialitiy conditions 

[Cortes 1992; Wang 1994; Wang 1997]. These analytical models have provided 

valuable insights, demonstrating the influence of load amplitude and duration, 

inertia, temperature, as well as strain and strain-rate hardening, on the 

micromechanisms of ductile spall failure. However, isolated void growth models 

can overpredict the material spall resistance because they do not account for the 

influence of neighboring voids. 

Two-dimensional meso-scale simulations (MSS) have demonstrated the 

influence of the void structure on spall failure [Benson 1993; Tonks et al. 1995; 

Tonks 1996]. Tonks et al. [1995; 1996] showed that spall at higher strain-rates 

was stochastic, consisting of many individual void clusters growing independently 

and impinging with little prior interaction. At lower strain-rates, a single, dominant 
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void cluster facilitated spall failure. Benson [1993] found that the variation of the 

peak transmitted stress, a spall strength metric, due to changing the void 

distributions was as large as the variation associated with doubling the void 

fraction (nearly 20%).  Since these previous studies were based on plane strain 

analyses without representative material mesostructures, however, they did not 

rigorously capture the complex, three-dimensional interactions that occur during 

the spall process. This is discussed further in Section 1.2.5. 

Further information on ductile spall can be found in the reviews of Davison 

et al. [1979], Meyers et al. [1983], Curran et al. [1987], Grady [1988], and Antoun 

et al. [2003]. 

1.2  Parameters affecting spall fracture in ductile metals 

Previous studies have shown that the loading profile, initial temperature, 

strain-rate hardening, inertia, and microstructure influence the spall fracture in 

ductile metals. At the microscale, these parameters can affect void nucleation, 

growth, or coalescence. Each of these parameters is discussed in the following 

sections.  

1.2.1 Loading profile 

Spall fracture in ductile metals has been shown to have a time-dependent 

character [Tuler and Butcher 1968; Barbee et al. 1972; Davison and Stevens 

1972; Cochran and Banner 1977]. Tuler and Butcher [1968] showed that the 

applied tensile stress magnitude needed to dynamically (spall) fracture aluminum 

1100 (pure) and aluminum alloy 6061-T6 decreased with increasing applied 

tensile stress duration. Interestingly, aluminum 1100, with a lower quasistatic 
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tensile strength than 6061-T6 aluminum, required a larger applied tensile stress 

to fracture at fixed applied tensile stress duration. This might result from the 

higher density of defects in the alloyed aluminum that served as potential void 

nucleation sites. The work of Tuler and Butcher [1968] provided a foundation for 

subsequent cumulative (void) damage models [e.g., Barbee et al. 1972; Davison 

and Stevens 1972].  

While void growth is only one micromechanism of the spall process, it is 

helpful for determining important parameters affecting spall fracture. Analytical 

void growth models have demonstrated time dependencies, e.g., Poritsky [1952] 

model of a void in an infinite viscous matrix under remote loading: 
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Where 0R , R  is the initial and current void radius, η  is the material viscosity, ρ  is 

the material density, γ  is the surface tension,  σ  is the hydrostatic compression, 

0gσ  is the threshold void growth tension, and t  is the time. As in Barbee et al. 

[1972], the left hand side of Equation (1.1) is simplified to Equation (1.2) by only 

considering the third term, all other higher order terms being negligible in 

comparison. Equation (1.3) was derived for the case of a square applied tensile 

wave and is consistent with the notions of applied tensile stress magnitude and 

duration discussed previously.  
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1.2.2 Initial temperature 

The spall strength has been shown to be dependent on initial temperature 

[Kanel et al. 1997, Duffy and Ahrens 1994]. Kanel et al. [1997] showed that the 

spall strength in Aluminum AD1 (nominally aluminum 1100) decreases with 

increasing initial temperature. The decrease with initial temperature is more rapid 

near the melting temperature. Also, sensitivity to shock pressure is more 

significant near the melt temperature because shock heating in this regime can 

be sufficient enough to melt the material. 

1.2.3 Strain-rate hardening 

Strain-rate hardening has been shown to affect the void growth predicted 

by analytical models of isolated voids under hydrostatic loading [Ortiz and 

Molinari 1992; Wu et al. 2003] and general load triaxialitiy conditions [Wang 

1997]. Wu et al. [2003] showed that increased material strain-rate hardening 

reduces void growth rate and eventual void size. Wang [1997] showed that 

strain-rate sensitivity had a significant effect at smaller void volume fractions 

(0.5% to 1%) and only a slight effect at larger void volume fractions (25%). The 

strain-rate sensitivity parameter is also shown to increase with the load triaxiality 

for a given value of void volume fraction.  

1.2.4 Inertia 

Analytical models have confirmed that inertia, hence material density, 

retards the growth of voids [Poritsky 1952; Ortiz and Molinari 1992; Wang 1997; 

Wu et al. 2003]. Wang [1997] showed that the inclusion of inertia can reduce the 

void growth rate by an order-of-magnitude in comparison to the inertia-free case 
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for void volume fractions exceeding 15%. Using Equation (1.1), Antoun et al. 

[2003] showed that for void radii up to 10 µm inertia effects are insignificant. For 

void radii greater than 100 µm, however, inertia effects are pronounced and 

impede void growth. The reduction of inertia effects in smaller voids enables 

them to grow relatively faster than the larger voids and, at relatively late-times, 

significantly reduce the initial size differential. Wu et al. [2003] showed that inertia 

effects are more pronounced with higher loading rates and was strongly 

dependent on the initial void size. At relatively late-times, however, voids of all 

sizes achieved a constant, absolute void growth rate.  

1.2.5 Microstructure 

1.2.5.1 Experimental studies 

The effects of grain size in copper [Christy et al. 1986; Minich et al. 2004] 

and purity levels in tantalum [Rivas et al. 2000] on spall fracture have been 

previously investigated. Christy et al. [1986] showed that the spall strength in 

polycrystalline copper increases with decreasing grain size, analogous to the 

Hall-Petch relation. While they found that voids nucleated primarily at the grain 

boundaries for their high purity copper samples, the eventual fracture is 

facilitated by voids within and on the boundaries of the copper grains.  

Minich et al. [2004] showed that the pullback velocity, a metric of spall 

strength, was significantly lower for 8 µm (average) grain sizes than for 45 to 80 

µm grain sizes in polycrystalline copper at shock pressures exceeding 20 GPa. 

This result directly contrasts with the Hall-Petch relationship. A possible 

explanation for this result is that the smaller grain sizes, with a larger grain 
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boundary surface area per unit volume, have more potential for nucleating voids 

at the boundaries. However, it takes a relatively higher shock pressure to 

nucleate those voids in comparison to voids inside the grains. It is important to 

characterize the three-dimensional nature of the grain structure since it 

influences the localized loading and, in turn, nucleation of voids at the grain 

boundaries.  

Rivas et al. [2000] found that under identical loading conditions, 

commercial purity tantalum exhibited more incipient spall damage (27% void 

volume fraction) than high purity tantalum (6% void volume fraction). An 

explanation for this result was that the commercial purity tantalum contained a 

higher defect density, enabling the nucleation of relatively more voids under the 

same loading conditions.  Without characterizing the three-dimensional defect 

structure, though, it is difficult to fully assess how it affects the spall response. In 

order to develop predictive spall fracture models, it is therefore important to 

correlate the three-dimensional microstructure to the void nucleation sites. In the 

current study, a model two-phase material was selected on the basis that its 

primary void nucleation site structure is readily quantifiable. Void nucleation site 

structure can be incorporated into predictive spall fracture models or used as the 

basis for seeding MSS.  

Although for quasi-static loading, the experimental investigation of 

Magnusen et al. [1988] provided insight on the role of void clustering on ductile 

fracture. They showed that plates with uniformly distributed holes (i.e., 

macroscopic voids) have larger strain-to-failure than plates with randomly 



  8 

  

distributed voids under identical tensile loading conditions. They surmised that 

void growth and coalescence are accelerated in the plates with randomly 

distributed voids because those plates contain void clusters that locally 

concentrate stress and strain. This effect is more prominent in low strain-

hardening materials due to increased susceptibility to plastic flow instabilities. 

These studies suggest that it is important to include the complex, non-uniform 

(i.e., higher dimensional) nature of the void structure in MSS to capture the 

realistic fracture behavior of ductile metals. In contrast, the assumption of uniform 

void size and spacing will likely contribute to the overestimation of a material’s 

resistance to fracture.  

1.2.5.2 Two-dimensional MSS 

Two-dimensional MSS have demonstrated that void clustering can 

accelerate the spall fracture process [Benson 1993] and modify spall fracture 

behavior with strain-rate [Tonks et al. 1995, 1996]. Moreover, including detailed 

microstructure in MSS permits the study of the spatial variability in spall fracture 

response [Vogler and Clayton 2007].  

Benson [1993] found that the variation of the peak transmitted stress, a 

spall strength metric, due to changing the void distributions is as large as the 

variation associated with doubling the void fraction (nearly 20%). Tonks et al. 

[1995; 1996] showed that spall fracture at higher strain-rates was stochastic, 

consisting of many individual void clusters growing independently and impinging 

with little prior interaction. These results suggest that it is critical to include the 
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detailed void structure in simulations, including the void size and spacing 

distribution, to most accurately capture its spall fracture response.  

Vogler and Clayton [2007] employed two-dimensional MSS in an effort to 

model experimentally measured variations in the pull-back signal of shocked 

tungsten heavy alloy. The pull-back signal is derived from the free surface 

velocity measurements and is a metric of the spall strength. Measured spatial 

variations in the spall strength metrics were attributed to the heterogeneous 

nature of this material. While their predicted spall strength variations were 

qualitatively similar to experimental measurements, the physical domain size of 

the simulation is believed to contribute to quantitative differences. These results 

suggest that the physical domain size of the simulation is important and needs to 

be considered in any new studies of the spatial variability in spall fracture. 

1.2.5.3 Necessity for three-dimensional microstructure in 

MSS 

Analytical models of isolated, spherical voids have demonstrated the 

influence of loading profile, initial temperature, strain-rate hardening, inertia, as 

well as void size and volume fraction on the dynamic growth of voids. However, 

these models do not account for void growth alterations arising from the 

interaction with neighboring voids. This is particularly important for materials that 

have a large initial volume fraction of void nucleation sites, such as the model 

material in this study (nodular ductile iron (NDI)), where individual void stress and 

strain fields overlap at the onset of loading. Not only is it necessary to include the 

interactions with neighboring voids, but also the non-uniformity of these 
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interactions. It has been demonstrated experimentally [Magnusen et al. 1988] 

and numerically [Benson 1993] that microstructural heterogeneity can have a 

significant impact on the damage and fracture response of materials. Since many 

engineering materials have heterogeneous microstructures, including NDI, it is 

then important to capture this aspect in MSS. Predictive meso-scale modeling 

requires incorporation of multiple void nucleation sites with material-

representative size and spacing distributions, intrinsically making these 

simulations two- or three-dimensional. The need for three-dimensional, rather 

than two-dimensional, microstructure is discussed further below.  

MSS have demonstrated the influence of two-dimensional microstructure 

on the spall fracture response of materials under impulsive loading conditions 

[Benson 1993; Tonks et al. 1995, 1996; Vogler and Clayton 2007]. These studies 

were based on plane-strain conditions, i.e., the void nucleating features were 

assumed to be cylindrical. The validity of this assumption is partially dependent 

on the specific material under investigation. Since the void nucleation sites in NDI 

consist of spherical, not cylindrical, graphite particles, plane-strain analysis is 

qualitatively inappropriate. There are also quantitative differences in void growth 

for cylindrical and spherical voids. The growth of a spherical void can be as much 

as 200% greater than than of an equally-sized cylindrical void under (identical) 

imposed displacements (see Appendix A). This result is based on the 

assumption of equal void volume fraction, void size, and work rate (energy) for 

both types of voids. The models of McClintock [1968] and Rice and Tracey 

[1969] for the growth of a cylindrical void (under plane-strain) and a spherical 
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void, respectively, in a rigid-perfectly plastic matrix are also quantitively different. 

In addition, void coalescence differs for cylindrical and spherical voids. 

Thomason [1968, 1999] qualitatively demonstrated that the coalescence 

geometry for cylindrical voids under plane-strain conditions involves the 

intersection of triangular wedges of plastic strain. The coalescence geometry for 

spherical voids involves the intersection of conical regions of plastic strain. 

Considering the shape of void nucleation features in NDI and the differences in 

void growth and coalescence mechanisms, it is appropriate to model the graphite 

second-phase particles as spheres in a three-dimensional MSS. 

 

1.3  Outline of current work 

The objective of this study is to investigate the effects of the second-phase 

particle structure and loading conditions on the ductile spall response of a model 

two-phase material. Quantitative metallography, three-dimensional meso-scale 

simulations (MSS), and small-scale spall experiments provide the foundation for 

this study. Nodular ductile iron (NDI) was selected as the model two-phase 

material for this study because it contains a large and readily identifiable second- 

phase particle population. Second-phase particles serve as the primary void 

nucleation sites in NDI and are, therefore, central to its ductile spall response.  

In Chapter 2, a mathematical description for the three-dimensional 

second-phase particle structure in NDI that includes the size and spatial 

distributions of those particles will be developed. Additionally, a methodology for 

the computer generation of representative particle structures based on their 
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mathematical description will be developed, enabling detailed three-dimensional 

MSS in Chapters 3 and 4. Previous studies have not systematically characterized 

the void-nucleating sites relevant to the micromechanisms of ductile spall or 

integrated this information into three-dimensional MSS. 

The primary goal of Chapter 3 is to utilize three-dimensional MSS to 

investigate the effects of second-phase particle size and spacing distributions, 

loading conditions, and length-scale on the spall response of a model two-phase 

material. Previous modeling studies have been, at most, two dimensional and did 

not consider representative microstructures. This prevents accurate depiction of 

the complex, three-dimensional interactions that influence void growth and 

coalescence in ductile metals. A spall strength model will be developed that 

accounts for the influence of the microstructure, loading, and length-scale 

parameters under study.  

In Chapter 4, small-scale spall experiments will be designed and executed 

for the purpose of validating closely-coupled three-dimensional MSS. These 

experiments will probe the effects of specimen geometry on NDI spall behavior 

under impulsive loading. Fragment size and spall strength will be used as the 

primary valiation metrics. Previous studies have not attempted to couple MSS 

directly to experiments, preventing direct validation of simulations. MSS will be 

performed to gain insights on the response of NDI to explosive loading.
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1.4 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Void growth, coalescence, and spall fracture of a ductile metal 

under dynamic tensile loading. 
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2.0  Characterization of the void nucleation sites in a model two-phase material  

2.1  Introduction  

In order to improve the understanding of the micromechanisms of ductile 

spall, it is important to identify and characterize the microstructural features 

relevant to void nucleation. Voids can nucleate at inclusions, second-phase 

particles, grain boundaries or other microstructural features. A limited number of 

experimental studies have explicitly considered the effects of initial 

microstructure on the spall response of metals [Christy et al. 1986; Rivas et al. 

2000; Minich et al. 2004]. While these studies investigated the effects of average 

grain size and impurity levels, rigorous characterization of the microstructural 

features relevant to void nucleation was not performed. It is difficult to 

characterize void nucleation sites because they may not be readily discernable 

from other microstructural features and are non-uniformly sized and spaced.  

The first objective of this chapter is to develop a mathematical description 

for the three-dimensional second-phase particle structure in a model material that 

includes the size and spatial distributions of those particles. Nodular ductile iron 

(NDI) was selected as the model material for this study because it contains a 

readily identifiable second-phase particle population. These particles serve as 

the primary void nucleation sites in NDI, i.e., particle structure quantification is 

tantamount to (potential) void nucleation site characterization. A high-order 

mathematical description of the particle structure that includes the small-scale 

heterogeneity is important to spall failure modeling in NDI.  
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The second objective of this chapter is to develop a methodology for the 

computer generation of representative particle structures based on the 

mathematical description developed in the first objective. Computer generation 

methods that accurately account for the mathematical description of the complex, 

three-dimensional particle structure enable detailed meso-scale simulations 

(MSS). MSS are important because they provide the foundation for small-scale 

and macro-scale structure-spall response studies that follow in subsequent 

chapters. Comparisons of the computer generated realization to the experimental 

measures of the particle structure were performed to verify accuracy of the 

particle generation methods.  

2.2  Methods 

2.2.1 Nodular ductile iron (NDI) 

ASTM A536, 60-40-18 NDI was selected as the model two-phase material 

for this study. The material used for this study was purchased from DuraBar®.  

NDI is a Fe-C-Si alloy and its chemical composition is shown in Table 2.1. NDI 

comprises a ductile matrix (first phase) with loosely-bound, large graphite 

particles (second-phase). These particles are central to its ductile fracture 

response [Clough et al. 1957; Shi et al. 1992; Liu et al. 2002], i.e., voids nucleate 

primarily at the graphite particles. Figure 2.1 depicts the two-phase 

microstructure of NDI in a undeformed metallographic section (Figure 2.1a) and 

in a fractograph (Figure 2.1b). The fractograph demonstrates that the voids 

nucleate at the graphite particles, signifying their central role in NDI ductile 

fracture. In the metallographic section, the graphite second-phase is the darker 
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particles within the contiguous matrix phase. These large and nearly spherical 

graphite particles make NDI well-suited for quantitative metallography studies.  

2.2.2 Mathematical description of the particle structure in NDI 

The development of a mathematical description of the three-dimensional 

particle structure in NDI consisted of the following steps: preparation of a 

metallographic specimen; capture of a digital image montage; extraction of 

particle structure data from digital image; and, analysis of particle structure data, 

including the calculation of particle area fraction, size distribution, and nearest 

neighbor distance.  

Metallographic sections of undeformed NDI formed the basis for all 

particle structure characterization. Image analysis software was used to extract 

the raw particle structure data, i.e., particle size and coordinates, from the 

metallographic sections of undeformed NDI. Particle area fraction, size 

distribution, and area fraction fluctuations were calculated directly from the 

particle structure data. Particle area fraction fluctuations are discussed further 

below. Where necessary, these quantities were transformed to a three-

dimensional form based on the assumption of a polydispersed system of 

spheres, i.e., a system of randomly and isotropically positioned spheres with a 

measurable size distribution [Underwood 1972; Corti et al. 1974]. The nearest 

neighbor distance was calculated directly from the particle volume fraction.  

2.2.2.1 Metallographic specimen preparation 

Particle structure characterization was performed on a metallographic 

section of undeformed NDI. The specimen was taken from the mid-radius of the 
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as-received NDI round stock, following the process for specimen preparation 

described in ASTM E-8 Standard Test Methods For Tension Testing of Metallic 

Materials. The mounted specimen was hand ground on successively finer SiC-

impregnated polishing papers, starting with 320-grit and finishing with 4000-grit 

paper. The specimen was then promptly polished on a Struers TegraPol using a 

nylon cloth with an aqueous solution of 3 µm diamond particles, washed with 

soap and water, and rinsed in flowing water. The specimen was then polished 

with 1 µm diamond on a nap cloth, washed and rinsed. The specimen was then 

given a final polish on a nap cloth with an aqueous solution of 0.04 µm colloidal 

silica, washed with water, rinsed with ethanol and dried. The specimen was not 

etched.  

2.2.2.2 Digital image montage and extraction of particle 

structure data 

A Reichert-Jun MeF3 inverted optical microscope with an automated two-

axis stage was used to capture and montage approximately 150 high resolution 

two dimensional images. Approximately 70,000,000 2mµ  of metallographic 

section data were captured at a resolution of 1.36 µm/pixel. Quantitative 

metallography analyses based on large image montages of the two-dimensional 

metallographic sections has been shown to be more representative of the particle 

structure than limited, high-magnification sampling [Shan et al. 2002; Yang et al. 

1997].  While the graphite phase is clearly recognizable in these images, further 

enhancements to the image contrast were necessary prior to raw data extraction.  



  21 

  

Image Pro Plus software was used to enhance the image montage and 

then extract raw particle structure data from the montage. Image enhancements 

were performed in order to expedite the particle structure quantification process. 

The image gamma value was reduced from 1.0 to 0.5 and the contrast was 

increased from 50 to 80, effectively making the matrix phase appear white and 

the particle phase appear black. An automated counting feature of Image Pro 

Plus was then used to obtain centroid position and mean diameter of all identified 

particles. These particle structure data were exported as an ASCII text file for 

subsequent analysis.  

2.2.2.3 Particle area and volume fraction 

The particle area fraction is a key scalar descriptor of the particle structure 

that is derived from the fundamental particle size and spacing distributions. It will 

be incorporated in the computer generation of representative particle structures 

and the development of particle structure models. The particle area fraction was 

calculated from the particle structure data over the entire montage by taking the 

sum of the individual particle areas divided by the total area over which 

measurements were taken: 
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Where 0Φ  is the (initial) macro-scopic particle area fraction, totN  is the total 

number of particles over the entire image montage, iA  is the area of the current 

particle, and totA  is the total measurement area of the entire montage 
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(70,000,000 2mµ ). Since the particle area fraction was calculated over the entire 

image montage, it is referred to as the macro-scopic particle area fraction. In 

statistical terms, 0Φ  is the mean particle area fraction of the entire population. 

This is an important clarification, as 0Φ  is used to develop statistical sampling 

methods in Section 2.2.2.6. 

2.2.2.4 Particle size distribution 

The three-dimensional particle size distribution is important for the 

computer generation of representative particle structures. In order to determine 

the three-dimensional particle size distribution, it was necessary to transform the 

two-dimensional particle size distribution using the process described by 

Saltykov [1967]. The transformation requires binning of the two-dimensional 

particle size data. The transformation equations used for this process are:  

 
, ,

1

1 i

V i A j j
ji

N N C
D =

= ∑  (2.2)
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Where ,V iN is the ith volume bin count, ,A jN  is the jth area bin count, and jC  is 

the Saltykov transformation constants. Based on the use of six bins in this 

study, iD , the ith (two dimensional) bin diameter, was calculated with: 

 ( ) maxmax 11
2 6 6i

i DDD
−⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.4)

 

Where maxD  is the maximum measured particle diameter. The count for each 

area bin, ,A jN , was determined using a simple binning algorithm on the two-
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dimensional particle structure data. The data has been sorted into six different 

bins ranging in average size from 17.3 to 104.2 µm, with a bin extent of 

approximately 17 µm.  

2.2.2.5 Particle nearest neighbor distance 

The three-dimensional nearest neighbor distance is important for 

developing a particle structure model, providing a microstructural length-scale. 

Since no methods exist for transforming two-dimensional nearest neighbor 

distance distributions to a three-dimensional quantity, a relationship based on 

Corti et al. [1974] was used to determine the three-dimensional nearest neighbor 

distance from the particle volume fraction. The relationship for nearest neighbor 

distance is: 
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Where nnL  is the average three-dimensional edge-edge nearest neighbor 

distance, r  is the average particle radius, 0Φ  is the macro-scopic particle volume 

fraction, and Γ  is the gamma distribution function. This relationship assumes a 

monodispersed system of spheres, i.e., randomly positioned but with uniform 

size. The graphite particles in NDI are actually a polydispersed system of 

spheres, i.e., a system of randomly and isotropically positioned spheres with a 

measurable size distribution. This assumption is inconsequential because nnL  is 

used to normalize the sampling size in Section 2.2.2.6 and not as a stand-alone 

microstructural metric.  
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2.2.2.6 Particle area and volume fraction fluctuations 

Particle area and volume fraction fluctuations represent a higher order 

particle structure metric that provides a measure of the spatial dispersion, e.g., 

clustering, of the particle area and volume fraction with length-scale. Quintanilla 

et al. [1997] and Torquato [2002] defined the particle volume fraction fluctuations 

as the particle volume fraction coefficient-of-variation (COV). In their definition of 

the COV, the standard deviation of the particle volume fraction sample ensemble 

is divided by the macro-scopic particle volume fraction i.e., the mean particle 

volume fraction of the entire particle population.  

A novel, multiscale sampling technique was developed to statistically 

determine the length-scale dependent area fraction fluctuations from the raw 

particle structure data. An ensemble of equally-sized sampling windows was 

generated, each centered at random locations in the particle structure domain 

(Figure 2.2). The particle area fraction, iφ , of the ith sampling window was 

determined: 
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Where   k kL x L  is the area of the (square) sampling window, ,part jA  is the area of 

the jth particle and there are particlesN  in the sampling window. The sampling 

ensemble consists of samplesN  total windows. The subscript k refers to the kth 

window size. Equation (2.6) is identical to Equation (2.1) with the exception that 
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(2.1) is calculated over the entire digital image montage (macro-scale) and (2.6) 

is calculated over a small sample of the image montage. The smaller sample 

sizes in Equation (2.6) are expected to yield larger particle area fraction COV. As 

part of determining the COV, the standard deviation, ( )kS Lφ  , over the entire 

sample ensemble is calculated:  
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Where ( )kS Lφ  is the standard deviation of the particle area fractions for a fixed 

window size (fixed kL ), samplesN  is the total number of samples (100 samples 

used), 0Φ  is the macro-scopic particle area fraction, and COVφ  is the particle 

area fraction COV at the fixed window size. Quintanilla et al. [1997] and Torquato 

[2002] used 0Φ  in COVφ  because it simplifies arguments for convergence with 

increased window size, i.e., as the length-scale becomes large, the COV 

approaches zero. Torquato [2002] argued that normalization with the sample 

mean, rather than the “true” mean of the entire particle population, would not 

necessarily guarantee convergence with increased sampling window size. As 

shown in Figure 2.2, this analysis was repeated for a range of sampling window 

sizes, 0 0 0, , 2L L L L L+ ∆ + ∆ , where 0L  is 25 µm and L∆  is 25 µm.  

As with the 1:1 transformation between particle area and volume fractions 

for a polydispersed system of spherical particles, it was assumed that a 1:1 
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transformation also applies for area fraction fluctuations on a sample-per-sample 

basis. Therefore, the non-dimensional particle area fraction COV measurements 

above were treated as particle volume fraction fluctuations.  

Random positioning of sampling windows reflected the uncorrelated 

nature of the NDI particle size and spacing distributions. This is particular true at 

the smallest window sizes considered in this study. Since the NDI second-phase 

particles are assumed to be isotropic, the directionality was not considered in the 

sampling process. These assumptions will be discussed further in Section 2.4.  

2.2.3 Computer generation of representative particle structures 

A methodology for the computer generation of representative particle 

structures was developed. This methodology was based on the mathematical 

description of the particle structure and required the following parameters to 

generate representative particle structures: bounding box spatial extents, particle 

spacing distribution, particle size distribution parameters, and macro-scopic 

particle volume fraction.  

The spatial extents of the bounding box were described by: min maxx x x≤ ≤ , 

min maxy y y≤ ≤ , and min maxz z z≤ ≤ . The spatial extents of the rectangular domain 

bounded the random number generator that was used for initial particle 

placement. Random and random-clustered particle spacing distributions were 

used in this study. In random particle generation mode, finite sized particles may 

overlap. Particle overlap was checked when particles were initially placed. If the 

non-overlapping option was activated, then the edge-edge nearest neighbor 

distance was checked with each new particle generation. If this value was 
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negative, i.e., particle overlap, then the coordinate for the current particle was 

discarded and another set of coordinates was determined using the random 

number generator. This process was repeated until the current particle did not 

overlap existing particles. A Weibull probability distribution function (PDF) was 

used to model the polydisperse system of particles in this study. To prevent 

unrealistically large or small particle generation, a maximum and minimum 

particle radius cutoff was implemented with the Weibull PDF.  

A macro-scopic particle volume fraction, 0Φ , with an associated user-

defined tolerance, ε , was used to constrain the total number of particles seeded 

in a specified bounding box region. Particle generation continued until the particle 

volume fraction criteria, 0 0ε φ εΦ − ≤ ≤ Φ +  , was met. Total particle volume 

fraction was calculated after each particle was generated. For the non-

overlapping option, the total particle volume fraction was a sum of the (spherical) 

particle volumes: 

 
( )

( ) ( ) ( )

3

1

max min max min max min

4
3

partN

i
i

gen

r

x x y y z z

π
φ ==

− − −

∑
 (2.9)

 

Where genφ  is the particle volume fraction of the generation, partN  is the total 

number of particles, and ir  is the radius of the ith spherical particle. For 

overlapping particles, a Monte Carlo technique requiring the random placement 

of many thousands of sampling points was used to determine the total particle 

volume fraction. In this, the particle total volume fraction was the ratio of the 

number of sampling points in the particle phase to the total number of sampling 
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points. While this section describes the utilization of particle domain spatial 

extents, particle volume fraction, particle size distribution, and random particle 

spacing for particle generation, spatial clustering beyond that achieved by 

random placement is not considered.   

To account for the random-clustered structure, i.e., spatially clustered, a 

nearest-neighbor based clustering algorithm was developed. An initially random 

set of n particles is generated, where pn denotes the nth particle position. The 

position of the nth particle’s nearest neighbor, pNN, is then determined. For each 

iteration, a new particle position, pn+1, is calculated: 

 ( )1 ( , )n n NN nf A α+ = + −p p p p  (2.10)
 ( )ln 1 2

( , ) (1 )expf A A Aα
α

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 (2.11)

 

Where ( , )f A α  returns a value from 0 to 1, A is the user-defined asymptotic 

value of the decaying exponential function (0<A<1), and α is the user-defined 

steepness value of the decaying exponential function (0< α <1). The degree of 

clustering obtained is based on clustering of initial set of particles, values of A 

and α (fixed for iterations), and the number of iterations through the algorithm. 

Also, for a fixed number of algorithm iterations, decreasing A and α increased the 

clustering tendencies of the particle set.  

2.3  Results 

2.3.1 Mathematical description of the particle structure in NDI 
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The particle area and volume fraction, size distribution, nearest neighbor 

distance, as well as particle area and volume fraction fluctuations were used to 

develop a mathematical description of the NDI particle structure.  

2.3.1.1 Macro-scopic particle area and volume fraction  

The NDI macro-scopic particle area fraction, 0Φ , is 0.115. Since the 

particle area fraction and the volume fraction are identical for a polydispersed 

system of spheres [Underwood 1972; Corti et al. 1974], the macro-scopic particle 

volume fraction, also denoted by 0Φ , is 0.115.  

2.3.1.2 Three-dimensional particle size distribution  

A two parameter Weibull probability distribution function (PDF) with lower 

(17 µm) and upper (100 µm) particle size bounds was used to fit the 

(transformed) three-dimensional particle diameter, D , data (Figure 2.3). : 
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Where the fitted Weibull shape and scaling parameters are: β =1.8 and η = 29.1 

µm, respectively. The mean three-dimensional particle diameter is 25.9 µm. 

Based on the average particle diameter of 25.9 µm and the macro-scopic particle 

volume fraction of 0.115, the nearest neighbor distance, nnL , is calculated to be 

32.4 µm.  

2.3.1.3 Particle area and volume fraction fluctuations 

As with particle area and volume fractiona, the area and volume fraction 

fluctuations were assumed to be identical. The particle volume fraction fluctuation 
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metric, particle volume fraction COV, ( )COV Lφ , was observed to decrease with 

increasing normalized sampling size (
nn

L
L

) and an exponential function 

adequately describes the decay (Figure 2.4): 

 
( ) exp
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LCOV L A B
Lφ φ φ
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Where L  is the (variable) sampling size, and nnL  is the nearest neighbor 

distance (32.4 µm). The exponential coefficients Aφ  and Bφ  are 1.89 and -0.59, 

respectively. ,A Bφ φ  and nnL  are particle structure dependent parameters whose 

values are unique to NDI. 

( )COV Lφ  was specified in order to calculate the representative volume 

element (RVE) size in NDI. The standard deviation of volume fraction was set to 

1% of macro-scopic volume fraction, i.e., ( )COV Lφ  = 0.01, where the fluctuations 

in the particle volume fraction are not significant. At this value, the RVE size was 

was 8.9 nnL  (288 µm). The choice of this value for ( )COV Lφ  is discussed further in 

Section 2.4.  

An analytical model for the heterogeneous second-phase particle structure 

in NDI was developed. A Gaussian PDF was fit to the length-scale dependent 

particle volume fraction using the particle volume fraction standard deviation in 

Equation (2.8) and the macro-scopic particle volume fraction, 0Φ :  
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Where ( ),P Lφ φ  is the particle volume fraction PDF, φ  is the (variable) local 

particle volume fraction at length-scale, L  , and all other terms have been 

previously defined. Plots of Equation (2.6) at larger length-scales, i.e., 6 nnL  and 

8 nnL , demonstrate that the probability of sampling the macro-scopic particle 

volume fraction also increases (Figure 2.5). In the limit as the length-scale 

becomes very large, L →∞ , then the particle volume fraction standard deviation 

approaches zero, 0Sφ → . ( ),P Lφ φ  essentially becomes a single-valued function 

since 0φ = Φ  is the only value with a non-zero probability. Alternately, the spread 

in ( ),P Lφ φ  increases with decreases in the length-scale, i.e., 1 ,2nn nnL L  and the 

probability of sampling the macro-scopic particle volume fraction is not 

substantially greater than much larger or smaller values.  

2.3.2 Computer generation of representative particle structures 

The particle volume fraction, size distribution, and volume fraction 

fluctuations were the primary inputs for generating a representative NDI-specific 

particle structure. Target and computer generated NDI particle structure data 

were compared and the error calculated with respect to the target data. While the 

computer generated macro-scopic particle volume fraction, 0Φ , and the particle 

size distribution parameters, η and β , have less than 2% error, the error particle 

volume fraction fluctuation parameters, Aφ  and Bφ , have 6.87% and 10.17% 
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error, respectively (Table 2.2). Seeding of the computer generated particle 

structure into a RVE-scale domain is shown in Figure 2.6. In this, the graphite 

particles are blue and the matrix is red and transparent. While non-uniform 

particle size and spacing are qualitatively evident in the generated particle 

structure, previously stated quantitative data are required to adequately compare 

with target NDI-specific particle structure.  

In this study, the nearest neighbor weighted clustering algorithm was 

utilized as part of achieving the target volume fraction fluctuations. In order to 

determine the necessary clustering parameters, several particle structure 

realizations were performed varying α and A for a fixed number (100) of 

algorithm iterations [Figure 2.7]. The same starting microstructure was used for 

each of these. As α and A are decreased from unity to nearly zero, clustering of 

the particle structure increases. More significant clustering is observed with 

decreases in A. The clustering algorithm parameters used to develop this 

computer generated NDI-specific particle structure are A = 0.27 and α = 0.05.  

 

2.4  Discussion 

The development of a mathematical description for the three-dimensional   

particle structure in NDI lead to the formulation of the probabilistic model in 

Equation (2.14) for the particle volume fraction, ( ),P Lφ φ . The key parameters in 

( ),P Lφ φ  are the macro-scopic particle volume fraction, 0Φ , and the particle 

volume fraction standard deviation, ( )S Lφ . ( )S Lφ  comprises the variable 

(sampling) length-scale, L , as well as the particle structure parameters, 
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0 ,  ,  A Bφ φΦ  and nnL . These latter particle structure parameter values are unique 

for NDI.  

The significance of these parameters is now ascertained. For small ( )S Lφ , 

the calculated 
nn

L
L

 is the length-scale at which the spatial fluctuations in the 

particle volume fraction dissipate, i.e., particle volume fraction is homogenized. 

Aφ  and Bφ   are also significant because they provide a measure of clustering and 

size of clusters, through their influence on ( )S Lφ .  For a relatively more clustered 

system, ( )S Lφ  is relatively large for a fixed (small) 
nn

L
L

 and, thus, Aφ  is large. 

While for a relatively uniform system, ( )S Lφ  is relatively small for a fixed (small) 

nn

L
L

 and, thus, Aφ  is small. Essentially, for an ensemble of (small) sampling 

windows, a larger dispersion in sample values are expected for a clustered 

system and a smaller dispersion of sample values are expected for a uniform 

array of particles. The average cluster size is discernable by how quickly or 

slowly ( )S Lφ   decays with increased 
nn

L
L

. ( )S Lφ  decays relatively faster with 

increased 
nn

L
L

, i.e., Bφ  is a relatively large negative value, when the average 

cluster size is relatively small. While ( )S Lφ  decays relatively slower with 

increased 
nn

L
L

, i.e., Bφ  is a relatively small negative value, when the average 

cluster size is relatively large. 
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 In light of Equation (2.14), the NDI particle volume fraction field, φ  , can 

be regarded as a superposition of fluctuations onto a mean field:  

 *
0φ φ= Φ +  (2.15)

 

Where *φ  is the particle volume fraction fluctuations and 0Φ  is the macro-scopic  

particle volume fraction. While 0Φ  is the integral of the local particle volume 

fraction over the large three-dimensional domain, it was approximated by taking 

the particle area fraction over the entire image montage: 

 

1
0

1lim

totN

i
i

V
tot

A
dV

V A
φ =

→∞

⎡ ⎤Φ = ≈⎢ ⎥⎣ ⎦

∑
∫  (2.16)

 

In general, the fluctuating component of the particle volume fraction field is both 

dependent on location and length-scale over which it is measured, i.e., ( )* , Lφ x . 

Directionality is not considered in the particle volume fraction field because the 

NDI second-phase particles are assumed to be isotropic. Since the second-

phase particles in NDI are spatially random (spatially uncorrelated), only the 

length-scale dependence is explicitly considered for the fluctuating component, 

i.e., ( ) ( )* *,x L Lφ φ→ . Consistent with this notion, the multiscale sampling 

technique used for acquiring particle volume fraction fluctuation data did not 

record sample position or orientation data. These particle volume fraction 

fluctuation measurements form the basis of  ( ),P Lφ φ .  

The RVE in materials with heterogeneous particle structures, such as NDI, 

go beyond unit cell notions. RVE size is a variable quantity based on property 
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measured and is much larger than characteristic material length-scales. Hill 

[1963] and other investigators [Hashin et al. 1962; Nemat-Nasser et al. 1999] 

have suggested that a RVE in realistic materials enclose a sufficiently large 

number of heterogeneities to adequately capture a macro-scopically uniform 

stress or strain response under uniform macro-scopic loading. By these 

qualitative definitions, it is necessary to specify an exceedingly large RVE size to 

attain a small COVφ  and, thus, a relatively uniform macro-scopic NDI response. 

This assumes that the NDI response correlates to the particle volume fraction. 

Considering Equation (2.15), as L →∞ , then *φ  and 0COVφ →  because 

0φ →Φ . If the user specifies COVφ  to be relatively small, as would be expected in 

a viable RVE, then the length-scale calculated from Equation (2.13) can become 

large. This impacts the computational resources required for RVE-scale MSS. If 

the user specifies COVφ  to be relatively large, then the calculated length-scale 

may not be a viable RVE, i.e., at that scale, a sufficient number of 

heterogeneities may not be enclosed. ( )COV Lφ  was specified in order to 

calculate the RVE size in NDI. The standard deviation of volume fraction was set 

to 1% of macro-scopic volume fraction, i.e., ( )COV Lφ  = 0.01, where the 

fluctuations in the particle volume fraction are not significant. The calculated RVE 

size is (288 µm)³ and encloses approximately 700 particles. Using a 

computational grid spacing of 5 µm results in a relatively feasible 200,000 

element RVE-scale MSS. While a sufficient number of particles are enclosed to 
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ensure a relatively homogeneous stress and strain response, the domain is small 

enough to execute numerous RVE-scale MSS.  

Numerical tools capable of generating particle structures based on their 

mathematical description enable MSS. In turn, MSS are used in Chapter 3 to 

study the effects of changing particle size and spacing distributions. Particle 

volume fraction, particle size distribution, and particle volume fraction fluctuations 

form the basis of the mathematical description. These parameters are also used 

as comparison metrics to determine the efficacy of these numerical tools. Better 

agreement is demonstrated with the particle volume fraction and the (Weibull) 

particle size distribution parameters, than for the particle volume fraction 

fluctuation parameters. The particle volume fraction fluctuation parameters do not 

compare as favorably because there is no explicit input for them in the numerical 

tools. Instead, the nearest-neighbor weighted clustering algorithm is used to 

control particle volume fraction fluctuations. Several open-loop iterations with the 

clustering algorithm are required to approximate measured NDI particle structure 

data. The development of a closed-loop control for the volume fraction 

fluctuations may minimize manual intervention, expediting the generation of 

representative particle structures.
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2.5  Figures 

                

Figure 2.1: a. Nodular ductile iron (NDI) two-phase microstructure consisting of 

graphite particles (dark) within a contiguous clear (white) Fe-Si matrix.  

b. NDI fractograph demonstrating central role of graphite particles  

in void nucleation and ducitile fracture.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Multiscale sampling technique for determination of particle area 

fraction fluctuations applied to a metallographic section of undeformed NDI. 

Incrementally larger sampling window sizes are shown. 

L

L L+ ∆

2L L+ ∆



  38 

  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120

Particle diameter (µm)

Pr
ob

ab
ilit

y

Fit
Data

 

Figure 2.3: Three-dimensional particle diameter probability distribution function 

(PDF) plots for the binned test data and corresponding Weibull PDF fit.  
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Figure 2.4: Particle volume fraction coefficient-of-variation (COV) versus 

normalized sampling size, 
nn

L
L

. Sampling size, L , is normalized by the nearest 

neighbor distance, nnL . 
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Figure 2.5: Particle volume fraction (Gaussian) PDF model plots for various 

length-scales demonstrating the increased distribution spread for smaller length-

scales with a fixed mean. 

 

Figure 2.6: Computer generated representative particle structure for NDI in an 

approximately 300 µm side cube. Particle size and non-uniform spacing 

distribution is qualitatively observed in image. 
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Figure 2.7: Computer generated particle structure realizations for various 

clustering algorithm parameters, A  andα .  
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2.6  Tables 

Element C Si Mn P S Cr Mg 

Weight % 3.72 2.51 0.31 0.07 0.01 <0.05 0.05 

 

Table 2.1: NDI chemical composition 

 

 Target NDI 

particle 

structure 

Computer 

generated 

particle structure 

 

 

%Error 

0Φ  0.115 0.114 0.86% 

η (um) 29.1 29.3 0.69% 

β  1.8 1.77 1.67% 

Aφ  1.89 2.02 6.87% 

Bφ  -0.59 -0.65 10.17% 

 

Table 2.2: Target NDI and computer generated particle structure data 
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3.0  Second-phase particle structure and loading effects on the ductile spall 

response of a model two-phase material under uniaxial strain conditions 

 

3.1 Introduction 

The primary goal of this chapter is to utilize three-dimensional meso-scale 

simulations (MSS) to investigate the effects of second-phase particle size and 

spacing distributions, loading conditions, and length-scale on the spall response 

of a model two-phase material. Analytical spall modeling has traditionally been 

focused on the dynamic growth of an isolated void under hydrostatic loading 

[Poritsky 1952; Carroll and Holt 1972; Johnson 1981; Ortiz and Molinari 1992; 

Wu et al. 2003], axisymmetric loading [Banks-Sills and Budiansky 1982], and 

general loading triaxialities [Cortes 1992; Wang 1994]. These analytical models 

have provided valuable insights, demonstrating the influence of void volume 

fraction, void size, load amplitude and duration, inertia, temperature, as well as 

strain and strain-rate hardening, on the micromechanisms of ductile spall failure. 

However, isolated void growth models tend to overpredict the material spall 

resistance because they do not account for the influence of neighboring voids.  

Two-dimensional MSS have demonstrated the influence of void clustering 

on spall failure [Benson 1993; Tonks et al. 1995; Tonks 1996]. Since these 

previous studies were based on plane strain analyses without representative 

material mesostructures, they did not rigorously capture the complex, three-

dimensional interactions that occur during the spall process.  
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In heterogeneous materials, more pronounced spatial variations in 

microscale spall response are expected. Only recently have studies focused on 

this phenomenon. Vogler and Clayton [2007] employed two-dimensional MSS in 

an effort to model experimentally measured variations in the pull-back signal of 

shocked tungsten heavy alloy. The pull-back signal is derived from the free 

surface velocity measurements and is a metric of the spall strength. Measured 

spatial variations in the spall strength metrics were attributed to the 

heterogeneous nature of this material. While their predicted spall strength 

variations were qualitatively similar to experimental measurements, the physical 

domain size of the simulation is believed to contribute to quantitative differences. 

These results suggest that the physical domain size of the simulation is important 

and needs to be considered in any new studies of the spatial variability in spall 

fracture. 

The Carroll and Holt [1972] (hereafter the CH model) and Johnson [1981] 

models of isolated void growth behavior demonstrated that the critical stress 

logarithmically decreases with increasing void volume fraction. The applicability 

of these analytical models to three-dimensional void growth and coalescence will 

be determined. MSS will be used to explore the effects of void volume fraction 

and loading conditions on spall response of a generic two-phase material.  

Analytical models of Poritsky [1952], Ortiz and Molinari [1992], and Wu et 

al. [2003] demonstrate that at larger void radii, inertia effects are much more 

pronounced and tend to suppress void growth. However, these models cannot 

assess the added influence of neighboring voids on void growth and 
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coalescence. MSS will be used to explore the effects of void size on the spall 

response of a generic two-phase material.  

While Vogler and Clayton [2007] showed that spatial variations in spall 

strength are influenced by material meso-structure, the effects of the physical 

domain size of the simulation (hereafter physical domain size) on these 

variations, though, were not examined. Material response is expected to 

homogenize with increased physical domain size based on general notions of 

representative volume elements (RVEs) [Hill 1963; Hashin et al. 1962; Nemat-

Nasser et al. 1999]. MSS will be used to explore the effects of physical domain 

size on the variations in spall response of the model material, nodular ductile iron 

(NDI).  

3.2 Methods 

3.2.1 Meso-scale simulation (MSS) description 

Meso-scale simulations (MSS) were used to explore the effects of particle 

volume fraction, particle radius, as well as applied load magnitude, ramp-time, 

and loading rate on the material spall response. MSS geometry, boundary 

conditions and measurements, particle structure generation, component phase 

material models, and finite element analysis code are described below.  

3.2.1.1 Geometry  

MSS geometry was designed to permit impulsive loading through void 

coalescence, prevention of end-effects from interfering with void growth and 

coalescence, attainment of uniaxial strain conditions, and a representative 

sampling of the second-phase particle structure.  
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The approach of Benson [1993] was adopted in this study to satisfy the 

impulsive loading and end-effects requirements. The second-phase particle 

region was a subset of larger simulation geometry and staggered from the 

loading plane, rather than coincident with it, to prevent artificial spall at the 

loading plane. Surrounding this particle region on either side were matrix phase 

regions. The simulation geometry was then extended in length downstream of 

the particle region to prevent the tensile pulse from reflecting at the free surface, 

propagating back to particle region, and interfering with void growth and 

coalescence.  

In order to study three-dimensional second-phase particle structure, 

Benson’s [1993] two-dimensional, rectangular-strip geometry was “extruded” in 

the third dimension.  This resulted in a prismatic bar, i.e., a long bar with a 

square cross-section. The particle region was a (subset) cube region within the 

larger prismatic bar geometry and offset from the loading plane. The lateral 

extent of the prismatic bar and, thus, particle region was dependent on the 

particle size and spacing statistics.  

A uniaxial strain boundary condition, typically associated with impact-

driven shock and spall experiments, was used in these simulations. Uniaxial 

strain conditions were achieved by designating all lateral faces of the prismatic 

bar geometry to be symmetry planes.  

Figure 3.1 depicts the prismatic bar geometry, the subset particle region, 

the extended matrix region downstream of particle region, and the designation of 
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symmetry planes. The prismatic bar geometry had an approximately 300 µm by 

300 µm cross-section and was 3000 µm long.  

3.2.1.2 Applied loading and measurement of transmitted 

stress 

The applied tensile stress, ( )tσ , and the spall strength metric were 

qualitatively identical to the approach in Benson [1993]. As shown in Figure 3.1, 

( )tσ  was applied normal to an end face of the MSS prismatic bar closest to the 

particle region. The loading consisted of a finite ramp-time, rampt , to a constant 

(maximum) value of stress, 0σ .The loading rate, σ& , and rampt  are related by 

 0

rampt
σσ =&  (3.1)

 

Loading rate was modified by either changing the rampt  or 0σ .  But the duration of 

this loading rate was set by rampt , after which it thresholded at 0σ .  

Downstream of the particle region, the transmitted stress time-history in 

the longitudinal direction was tracked. The peak transmitted stress was used as 

the spall strength metric (SSM) for this study because it is a measure of the 

ultimate load capacity of the prismatic bar.  

3.2.1.3 Particle structure 

Several second-phase graphite particle structure realizations were 

generated using computational tools developed in Chapter 2. The initial macro-

scopic particle volume fraction, 0Φ , and the initial particle radius, 0r , were 

modified between realizations. Generic particle structures were generated 
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assuming a uniform particle size distribution and random particle spacing. The 

number of particles in a given realization was dependent on the particle region 

volume in the prismatic bar, 0r , and 0Φ . 

3.2.1.4 Finite element analysis code 

Simulations were performed using LLNL’s three-dimensional arbitrary-

Lagrange-Eulerian (ALE) code, ALE3D [Nichols 2007]. ALE3D was used for 

these simulations because it permits seeding of the void nucleating particles 

across mesh lines, it handles large deformations of the matrix material around 

the growing void while still capturing the void-matrix interface, and it permits void 

coalescence as it culminates to spall fracture. Neither a lagrangian-only or 

eulerian-only code can adequately simulate these material behaviors. MSS had 

approximately five million elements with an element size of 5 µm in the particle 

region. Elements were spatially graded outside of the particle region to improve 

computational efficiency.  

3.2.1.5 Component phase material models 

Elasticity, yield surface, hardening, equation-of-state (EOS), and failure 

models were separately specified for the Fe-Si alloy matrix and graphite particle 

phases. Model parameters were determined from a combination of experiments 

and literature.  

3.2.1.5.1 Elasticity model 

An isotropic elasticity model was used for both the Fe-Si alloy matrix and 

the graphite particles. As is common in finite element analysis (FEA) codes that 

handle large pressures, the hydrostatic and deviatoric response is treated 
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separately. A separate EOS model is utilized for the hydrostatic response of the 

material. Therefore, the isotropic elasticity is only applicable for the deviatoric 

component of the elastic response, 

 / '2 el
ij ijσ µε=  (3.2)

 

Where /
ijσ  is the deviatoric stress, µ  is the shear modulus, and 'el

ijε  is the 

deviatoric, elastic strain. Only the shear modulus is specified for this model. 

3.2.1.5.2 Yield surface model 

The 2J flow (yield surface) model is used to model the inelastic response 

of the Fe-Si alloy matrix and the graphite particles. The flow potential, ϕ  , is 

typically expressed as an inequality:  

 ( ) 0eq eqYϕ ε σ= − ≤  (3.3)
 

At the core of this model is the scalar von Mises stress based on deviatoric 

stress,  

 
/ /3

2eq ij ijσ σ σ=  (3.4)

 

and the material strain and strain-rate hardening response, ( ),eq eqY ε ε& . The scalar 

equivalent plastic strain (EPS), eqε , is given by: 

 2
3

pl pl
eq ij ijε ε ε=  (3.5)

 

Where pl
ijε  is the plastic strain tensor. 
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3.2.1.5.3 Hardening models 

The strain-rate dependent Johnson-Cook strength model [Johnson and 

Cook 1985] was used for the Fe-Si alloy matrix and an elastic-perfectly plastic 

model was used for the graphite particles. It has been shown that strain-rate can 

influence spall strength [e.g., Ortiz and Molinari 1992]. The Johnson-Cook model 

has the form: 

 
( ) ( )

0

, 1 ln 1
m

eqn room
eq eq eq

melt room

T TY A B C
T T

ε
ε ε ε

ε

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟= + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

&
&

&
 (3.6)

 

Where ,A B  are strain-hardening coefficients, n  is the strain hardening exponent, 

eqε  is the current EPS, C  is the strain-rate hardening coefficient, 0ε&  is the 

reference strain-rate, eqε&  is the current EPS rate, roomT  is the room (reference) 

temperature, meltT  is the melt temperature, m  is the temperature exponent, and 

T  is the current temperature. Quasistatic and Hopkinson bar compression data 

were used to parameterize this model for the Fe-Si alloy. The Johnson-Cook 

model parameters and the shear modulus for the Fe-Si alloy are shown in Table 

3.1. The graphite elastic-plastic perfectly parameters are shown in Table 3.2. The 

temperature dependence was disabled in these studies by setting meltT  to 510 K  

and m  to unity.  

3.2.1.5.4 Equation-of-state (EOS) model 

Under shock compression, an isothermal (elastic) bulk modulus can no 

longer accurately describe the material pressure-volume relationship and an 
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EOS model is needed [Duval et al. 1963]. A prevalent EOS form for materials is 

the Gruneisen model: 
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 (3.7)

 

Where P  is the pressure, 0 1ρµ
ρ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 is the volumetric compression, 0 ,ρ ρ  are 

the initial and current densities, c  is the y-intercept of the shock velocity-particle 

velocity fit (approximately the sound-speed), 0γ  is the Gruneisen coefficient, a  is 

the linear correction to the Gruneisen (gamma) coefficient, iS  are the shock 

velocity-particle velocity polynomial coefficients, and E  is the internal energy. 

The Gruneisen model was used for both the Fe-Si alloy matrix and the graphite 

particles. EOS parameters for the graphite particles were taken from Steinberg 

[1996]. Since EOS parameters did not exist for the Fe-Si alloy, those for a low 

carbon steel were used [Steinberg 1996]. The Gruneisen EOS model parameters 

for the Fe-Si alloy and graphite are given in Tables 3.3 and 3.4, respectively.  

3.2.1.5.5 Failure models 

At the microscopic level, spall fracture is characterized by the rapid 

nucleation, growth and coalescence of voids in a narrow band. Voids nucleate at 

inclusions, second-phase particles, grain boundaries or other microstructural 

features. Voids grow under tensile loading and coalesce via impingement or 

localized strain bands. In the current study, void nucleation at the graphite 
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particles and void coalescence via intervoid matrix shear were modeled by 

applying material failure criteria.  

Void nucleation was modeled by applying a hydrostatic-pressure based 

criterion to the graphite material in the MSS. A relatively small value of 

hydrostatic tension was used (10 MPa) since graphite particles were assumed to 

be loosely bound to the matrix material. This value is less than 1% of the lowest 

applied load magnitude (2 GPa). Void nucleation is effectively induced in the 

graphite particles whenever hydrostatic tension is encountered. After nucleation 

occurred, the pressure and deviatoric stress were zeroed in the particle (now 

void) region. In this study, the term “particles” refers to the initial graphite 

particles and the term “voids” refers to the region after nucleation by hydrostatic 

tension.  

Void coalescence via intervoid shear was modeled by applying an 

equivalent plastic strain (EPS) criterion to the matrix materials in the MSS. This 

EPS criterion (0.4) was pressure-independent because the void and matrix 

phases are treated as separate and distinct regions in current simulations. 

Continuum-scale strain-based ductile failure models have pressure-dependence 

primarily because the void and matrix phases are homogenized [Hancock and 

MacKenzie 1976; Johnson and Cook 1985] and pressure affects the 

micromechanisms of ductile fracture. Pressure-dependence would only be 

relevant in MMS if the matrix phase had a much smaller (sized) void population 

in it that facilitated coalescence, i.e., void-sheeting [Cox et al. 1974]. Void-

sheeting has not been observed in NDI fracture.   
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Since mesh sensitivity associated with material softening and failure is 

well documented [Bazant 1976; Bazant and Belytschko 1985], a limited study 

investigating the effects of mesh size (2, 4, 5, 10 µm) on the SSM were 

conducted. These were performed on the MSS configuration shown in Figure 

3.1. For this study, an applied load magnitude of 2 GPa, ramp-time of 0.05 µs, 

initial macro-scopic particle volume fraction of 11.5%, and initial radius of 13 µm 

was used.  

3.2.2 Generic two-phase material MSS 

Initial RVE-scale MSS studies of the generic two-phase material explored 

the effects of initial macro-scopic particle volume fraction, 0Φ  (1%, 5%, 11.5%, 

15%) on the peak transmitted stress, i.e., the SSM, for differing applied load 

magnitudes, 0σ  (2, 4, 6, 8 GPa). The load ramp-time, rampt  (0.050 µs), and the 

initial particle radius, 0r  (13 µm) were fixed in these studies. These studies 

provide baseline comparison metrics to existing analytical models, especially the 

CH model.  

Additional studies investigated the effects of load ramp-up, rampt  (0, 0.05, 

0.5 µs) for various 0Φ  (5%, 11.5%) and 0σ  (2, 4, 6 GPa) on the SSM. 0r   was 

fixed at 13 µm. The purpose of these studies is to determine if the increased 

rampt , in conjunction with changes to 0Φ   and 0σ , can accelerate the material void 

growth and alter the SSM.  

The effects of 0r  (1, 13, 50 µm) and 0σ  (2, 4, 6 GPa) on the SSM were 

also explored. In these studies, 0Φ  (5 %) and rampt  (0.5 µs) were fixed. The 
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purpose of these studies is to determine if SSM response is dominated by inertia 

effects at larger particle sizes or if loading or interaction effects come into play 

during void growth and coalescence.  

The effects of load rate, σ&  (6, 12, 24, 60, 120 GPa/ µs) on void growth 

rate, Φ& , and SSM were also investigated. The 0σ   (6 GPa), 0Φ  (5 %), and r  (13 

µm) were fixed. The purpose of these studies is to directly determine if changes 

to σ&  correlate to changes in Φ&  and, thus, SSM. This study complements the 

previously described rampt  study by more narrowly focusing on the effects of σ& , 

but with a fixed 0σ .  

3.2.3 NDI-specific sub-scale MSS 

NDI-specific studies explored the effects of MSS physical domain size 

(100, 300 µm) on the spatial variations of the SSM. 0σ  (2 GPa), rampt  (0.05 µs), 

0Φ  (11.5%) and 0r  (13 µm) were fixed. The latter two particle structure data is 

specific to NDI. The objective of this study was to quantify the changes in spatial 

variation with changes to the physical domain size. The metric used to quantify 

variations was the SSM coefficient-of-variation (COV), which is the ratio of the 

SSM standard deviation to the SSM mean value.  

Particle structure for the NDI-specific MSS were extracted from a single, 

master realization. Rather than re-creating realizations for each of the sixty 

simulations, a master realization was randomly (spatially) sampled. Thirty 

samples were taken each at the 100 and 300 µm physical domain sizes. Each 

sample of microstructure became the particle structure used for one simulation. 

Thirty (30) simulations were conducted for each physical domain size in order to 
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ensure statistical significance of the variations of peak transmitted stress. The 

master realization was that of the largest direct numerical simulation in Chapter 

4. At a 4000 µm diameter by 2000 µm thickness, the master realization provided 

ample volume from which to sample for these simulations.  

 

3.3 Results 

3.3.1 The effects of initial volume fraction and applied load 

magnitude 

Figure 3.2 demonstrates the MMS-predicted effects of initial particle 

volume fraction, 0Φ  (1%, 5%, 11.5%, 15%), on the spall strength metric (SSM) 

for different applied load magnitudes, 0σ  (2, 4, 6, 8 GPa). For constant 0σ , the 

SSM decreases with increasing 0Φ , being linear in ( )ln φ . For constant 0Φ , the 

SSM decreased with increasing 0σ . This was more pronounced at lower 0Φ  (1%, 

5%) and lower 0σ . At a 15% particle volume fraction, though, there was less then 

0.03 GPa (5% of SSM) change in SSM for 0σ  from 4 to 8 GPa. At a 1% volume 

fraction and 0σ  of 2 GPa, there was no apparent spall detected in the simulation 

and, thus, no peak transmitted stress was observed.  

Carroll-Holt [1972] model (CH model) and Johnson [1981] model results 

are also plotted for comparison. For these models, the initial void volume fraction 

is assumed to be equal to the initial particle volume fraction, 0Φ . This assumption 

is consistent with the modeling of void nucleation in MSS, whereby the loosely 

bound graphite particles are assumed to nucleate voids at a hydrostatic tension 
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value of less than 1% of the lowest applied load magnitude. It is remarkable how 

well the CH model, a model based on an isolated and spherical void, compares 

with the MSS results for lower 0σ . This agreement motivated the selection of the 

CH model as the framework for the new model described in Section 3.3.5.  

3.3.2 The effects of load ramp-time 

Figures 3.3, 3.4, and 3.5 demonstrate the effects of 0Φ  (5%, 11.5%) on 

the SSM for different load ramp-up (0, 0.05, 0.5 µs) and 0σ   (2, 4, 6 GPa). For 0σ  

of 6 GPa (Figure 3.5), there was nearly 0.25 GPa (25% of SSM) difference in the 

SSM between 0 µs and 0.5 µs ramp-time. For 0σ  of 2 GPa (Figure 3.3), there 

was a 0.025 GPa (<2.5% of SSM) change with rampt and the SSM value at 0Φ  of 

5% and 11.5% were approximately 1.0 and 0.7 GPa, respectively.  Furthermore, 

it was observed that the SSM values for the higher 0σ   (4, 6 GPa) at higher 0Φ  

(5%, 11.5%) for the 0.5 µs ramp-time are also approximately 1.0 and 0.7 GPa, 

respectively. The similarity of the SSM for the lowest 0σ  for all rampt  (Figure 3.3) 

and the higher 0σ  at the longest rampt  (Figure 3.4 and 3.5) is notable, and will be 

discussed later, in Section 3.4. 

The void volume growth rates, Φ&  , for the upper (6 GPa) and lower (2 

GPa) applied load bounds, rampt  from 0 to 0.5 µs, and a 0Φ  of 5% are shown in 

Figure 3.6. For 0σ  of 6 GPa, the peak Φ&  is 4.5 and 2.5 1sµ −  for rampt  of 0 and 0.5 

µs, respectively. The longer rampt  tends to reduce the void growth rate at a 0σ  of 6 

GPa. For 0σ  of 2 GPa, the peak Φ&  is 1.75 and 1.85 1sµ −  for rampt  of 0 and 0.5 µs, 
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respectively. As the peak Φ&   increased, the SSM decreased. The SSM is 0.75 

and 1.01 for peak Φ&   of 4.47 1sµ −  (maximum) and 1.73 1sµ −  (minimum). 

3.3.3 The effects of initial particle radius and applied load 

magnitude 

Figure 3.7 demonstrates the effect of the initial particle radius 0r  (1, 13, 50 

µm) on the SSM for different  0σ  (2, 4, 6 GPa). SSM decreased for increasing 0r  

with a log-linear relationship  The effects of 0r  were less pronounced for 0σ  of 2 

GPa, where the SSM dropped 0.05 GPa (<5% of SSM) for 0r  from 1 to 50 µm, 

than for 0σ  of 6 GPa, where the SSM dropped 0.14 GPa (<15% of SSM) for 0r  

from 1 to 50 µm. For fixed 0r , the SSM decreased with increasing 0σ . For 

example, for 0r  equal to 1 µm, the SSM was 1.07, 0.97, and 0.9 GPa for 0σ  of 2, 

4, and 6 GPa, respectively. For 0r  equal to 50 µm, the SSM was 1.02, 0.84, and 

0.76 GPa for 0σ  of 2, 4, and 6 GPa, respectively. Since inertia has been shown 

to have a more significant effect at larger 0r  (for fixed 0Φ  and 0σ ), these results 

were unexpected and will be discussed later in Section 3.4. 

While the SSM decreased for increasing 0r , the peak Φ&  did not increase 

for decreasing SSM, as was described in the latter portion of Section 3.3.2. The 

realization that the transit time of an elastic wave at velocity, 0c , across a 

nucleated void with radius, 0r , affects incremental load across the void led to the 

utilization of a normalized time (discussed further in Section 3.4): 
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A normalized void growth rate, normΦ&  (unitless), was then defined. It is the 

incremental void growth, dφ , divided by the increment in normalized time, normdt . 

Figure 3.8 shows normΦ& as a function of normt . For 0σ  of 2 GPa, normΦ&  for the 50 

µm radius ( 33.70x10− ) is approximately 250% of that for the 1 µm radius 

( 31.40x10− ). For 0σ  of 6 GPa, normΦ&  for the 50 µm radius ( 21.07x10− ) is 

approximately 200% of that for the 1 µm radius ( 35.34x10− ). Maximum normΦ&  

( 21.07x10− ) was found for the 6 GPa applied load and 50 µm radius, and the 

minimum normΦ&  ( 31.40x10− ) was found for 0σ  of 2 GPa and 1 µm radius. As in 

Section 3.3.2, the maximum normΦ&  leads to the minimum SSM (0.76 GPa) and 

the minimum normΦ&  leads to the maximum SSM (1.07 GPa). 

3.3.4 The effects of load rate 

Figures 3.9 and 3.10 demonstrate the effects of load rate, σ&  (6, 12, 24, 

60, 120 GPa/ µs) on the time-history of Φ&  and the peak Φ& . The peak Φ&  of 3.2 

1sµ −  (120 GPa/µs) was 215% larger than the peak Φ&  of 1.49 1sµ −  (6 GPa/µs). 

The peak Φ&  decreased for decreasing σ&  but reached a floor value at 

approximately 1.5 1sµ −  . In fact, a linear relationship was found between the peak 

Φ&  and the σ&  (Figure 3.10).  

Figure 3.11 demonstrates the linear increase in SSM with decreasing σ&  to 

a maximum SSM of approximately 1.0 GPa.This reinforces the trends in Figures 
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3.3 to 3.6 that longer ramp-times, and thus smaller loading rates, tend to have 

larger SSM up to a maximum value that is relatively insensitive to σ& . Altogether, 

Figure 3.11 demonstrates that increasing σ&  beyond a threshold value (~24 

GPa/µs) tends to increase the peak Φ& ,  and decrease the SSM. 

Figure 3.12 illustrates the qualitative differences in the void growth and 

coalescence at loading rates of 120 and 12 GPa/µs. The transverse view of the 

MSS particle region is shown. The tensile loading wave approaches the particle 

region from the right side. The particles have been subdivided into ten color 

coordinated regions in the loading direction to better track void recruitment 

downstream (to the left). Void growth occurs sooner in the 120 GPa/µs case than 

in the 12 GPa/µs case primarily because, at a fixed time, the load in the higher 

loading rate case is higher (up to the maximum of 6 GPa). Of course, the wave 

transit time needs to be accounted for in these cases, as well, since the particle 

region is offset from the loading plane. Based on an offset of 300 µm and a 

wave-speed of 3980 µm/ µs, the time offset is 0.075 µs. At a simulation time of 

0.15 µs (adjusted time of 0.075 µs), the load has reached 0.9 GPa in the 12 

GPa/µs case and thresholded at 6.0 GPa in the 120 GPa/µs case. At a 

simulation time of 0.40 µs (adjusted time of 0.325 µs), the load has reached 3.9 

GPa in the 12 GPa/µs case and remains thresholded at 6.0 GPa in the 120 

GPa/µs case. At this time, the voids have nearly coalesced in the 120 GPa/µs 

case while they have grown significantly in the 12 GPa/µs case. By the 

simulation time of 0.55 µs (adjusted time of 0.475 µs), the void coalescence has 

occurred in both cases. While void growth in the 12 GPa/µs case involves four 
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color (subdivided) regions (red, green, blue, and turquoise), void growth in the 

120 GPa/µs case only involves two color (subdivided) regions (blue and 

turquoise). This suggests that at lower loading rates, relatively more downstream 

voids are recruited in the coalescence process. This is a significant result that will 

be discussed later in Section 3.4.  

3.3.5 Carroll-Holt (CH) model modification 

Based on the foregoing MSS results, the CH model was modified to 

capture the additional effects of σ&  and 0r . Figures 3.13 and 3.14 depict the 

construction of this model. Figure 3.13 is an altered version of Figure 3.2 that 

showcases the key effect to be captured, i.e., the change in SSM-Φ  slope with 

loading. Figure 3.14 demonstrates the influence of loading rate on the SSM-Φ  

slope, which is separated into two load rate regimes: the subcritical regime and 

the supercritical regime. The resulting modified CH model has the form: 

 ( ) ( ) ( )0 ,, ln lnspall norm off spall offm Yσ σ σ⎡ ⎤= − Φ − Φ +⎣ ⎦&  (3.9)
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Where ( ), normm Y σ&  is the SSM-Φ  slope and is a function of the yield strength, Y , 

and the normalized loading rate, normσ&  . normσ&   is a function of the loading rate, σ&  , 

the initial void radius, 0r , and the matrix material sound speed, 0c . The 

coefficients ,A B  are -0.0838 and 0.1842, respectively. The volume fraction 

offset, offΦ , was 27.6% and the load offset, ,spall offσ  , (based on offΦ ) was 0.395 
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GPa. Figure 3.14 is used to determine the critical loading rate, i.e., the loading 

rate between the subcritical and supercritical regimes (0.13 GPa- no time unit 

since normalized). In this subcritical regime (  normσ&  ≤ 0.13 GPa), ( ), normm Y σ&  is 

2
3
Y . In the supercritical regime (  normσ&  > 0.13 GPa), ( ), normm Y σ&  becomes a 

function of the normalized loading rate,  ln( )normA Bσ +& . The subcritical and 

supercritical regimes are discussed futher in Section 3.4.  

Figure 3.15 depicts the comparison of Figure 3.2 results for 0σ  of 2 and 8 

GPa with modified CH model in Equation (3.9). For 0σ  of 2 GPa,  normσ&  < 0.13 

GPa (no time units since normalized) and, therefore, ( ), normm Y σ&  is set to 2
3
Y  in 

the modified CH model for comparisons to Figure 3.2 results. This is the lower 

bound case for the loading rate. For 0σ  of 8 GPa,  normσ&  > 0.13 GPa and, 

therefore, ( ), normm Y σ&  is set to  ln( )normA Bσ +&  in the modified CH model for 

comparisons to Figure 3.2 results. This is the upper bound case for the loading 

rate. Good agreement is demonstrated for these bounding cases, verifying the 

implementation of the CH model modification since it was partially based on 

Figure 3.2.  

3.3.6 The effects of length-scale on NDI-specific SSM variations 

Figure 3.16 depicts the SSM histogram resulting from the thirty (30) 

simulations performed at each the 300 and 100 µm physical domain sizes. The 

SSM histogram consists of 10 bins, ranging from a minimum SSM of 0.456 GPa 

to a maximum SSM of 1.094 GPa. This results in a bin size of 0.064 GPa. There 
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are significantly larger SSM variations at the 100 µm physical domain size than 

with the 300 µm physical domain size. The mean and standard deviation are 

0.802 and 0.027 GPa for the 300 µm physical domain size and 0.778 and 0.166 

GPa for the 100 µm physical domain size.  

Figure 3.17 demonstrates the effects of the normalized physical domain 

size, 
nn

L
L

, on the SSM coefficient-of-variation (COV) for the MSS at each physical 

domain size (100 or 300 µm). Where L  is the MSS physical domain size and nnL  

is the nearest-neighbor distance. The COV is the ratio of the standard deviation 

to mean value. Each MMS data point in Figure 3.17 represents predictions from 

thirty simulations. Model data in Figure 3.17 is discussed below in Section 3.3.7. 

For the MSS predictions, the SSM COV decreases from 0.25 at 
nn

L
L

of 3.0 to 

0.035 at 
nn

L
L

 of 7.75. Extrapolation of model data out to a SSM COV of 0.01, 

which was used in Chapter 2 to determine the effective RVE size based on the 

particle volume fraction, leads to 
nn

L
L

 of approximately 10.5.  

3.3.7 Incorporation of NDI-specific particle volume fraction model 

with modified CH model 

In order to account for SSM variations due to MSS physical domain size, 

Equation (3.9) was integrated with the NDI specific probabilistic particle volume 

fraction model, ( ),P Lφ φ , from Chapter 2: 
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Where 0Φ = 0.115, Aφ  =1.89, Bφ  = -0.58, and nnL  = 32.4 µm and these 

parameters are discussed in Chapter 2. In order to generate results with this 

model, 
nn

L
L

 was fixed in Equation (3.13), and then it was substituted into 

Equation (3.12). For each fixed 
nn

L
L

 , ten thousand particle volume fraction 

samples were taken from ( ),P Lφ φ . Each particle volume fraction sample was 

input to the modified CH model in Equation (3.9) to calculate the SSM. A SSM 

COV value was calculated and reported at each 
nn

L
L

. The SSM COV versus 
nn

L
L

 

is shown in Figure 3.17. For the model, the SSM COV exponentially decreases 

from 0.9 at a 
nn

L
L

 of 1.0 to 0.015 at a 
nn

L
L

 of 8.0. Extrapolation of model data out 

to a SSM COV of 0.01, which was used in Chapter 2 to determine the effective 

RVE size, leads to a 
nn

L
L

 of approximately 9. This contrasts with the larger value 

(10.5) predicted by the MSS.  

3.3.8 Mesh sensitivities 

Figure 3.18 shows the effects of mesh size on SSM. For mesh sizes of 10, 

5, 4, and 2 µm, the SSM is 0.709, 0.739, 0.745, and 0.751 GPa, respectively. 
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With respect to the 2 µm case, the SSM of the 10, 5, and 4 µm cases differ by 

5.67%, 1.68%, and 0.83%, respectively. While the SSM difference appears to 

decrease with decreasing mesh size for these particular simulations, mesh 

sensitivities associated with material failure are still considered to be a source of 

uncertainty for the suite of MMS-based studies in this chapter and will be 

discussed further in Section 3.4. 

3.4 Discussion 

While the MSS capture the three-dimensional nature of the void 

interactions, they are remarkably consistent with the isolated (spherical) void 

models of Carroll-Holt [1972] and Johnson [1981] in the lower loading rate (σ& ) 

regimes. Small differences at a fixed, lower loading rate can be attributed to the 

initialization of MSS with non-uniform particle structures. Several studies have 

shown that materials with non-uniform void distributions tend to concentrate 

stress and strain [Ohno et al. 1984; Becker 1987; Huang et al. 1993], and more 

rapidly fracture [Magnusen et al. 1988] than those with uniform void distributions. 

This bolsters the need for representative, three-dimensional particle size and 

spacing distributions in MSS.  

While the predicted SSM is nearly independent of applied load conditions 

at lower σ& , loading dependencies are observed at higher σ& . This is conveyed in 

Figure 3.11, where the SSM is shown to be a linear function of σ&  beyond a 

critical threshold value. Figure 3.12 qualitatively demonstrates the effects of σ&  on 

void growth and coalescence. At higher σ& , void growth and coalescence is 

relatively more spatially localized. The voids tend to interact and coalesce with 
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other voids that encounter the stress wave at nearly the same time. Whereas at 

lower σ& , void growth and coalescence is relatively more spatially diffused. In this 

case, the voids tend to interact with nearest-neighbors or even the nearest 

cluster and more momentum, as evidenced by void growth, is transmitted 

downstream. Benson [1993] also found the peak transmitted stress to be 

relatively independent of applied loading. However, they did not observe SSM 

dependence on loading conditions likely because they did not consider higher σ& . 

Lower σ&  can be regarded as a “quasistatic” limit, or subcritical regime 

loading rate, for the SSM. In this regime, the SSM is independent of loading, 

which is analogous to, but not identical to, observations in actual quasi-static 

tests. The higher σ&  can be regarded as being in the supercritical regime [Wu et 

al. 2003]. In the supercritical loading regime, the increased Φ&  reduces 

momentum transfer downstream of the spall plane prior to void coalescence and, 

thus, the transmitted stress decreases. This is evidenced by the trends showing 

increased void growth rate, Φ& , with increasing σ&  (Figure 3.9), as well as the 

relatively more localized growth and coalescence of voids for higher σ&  (Figure 

3.12).  

The logarithmic decrease in SSM for increasing 0r  contrasts with previous 

model predictions of the inhibiting effects of inertia and the limiting velocity of 

materials under tension (i.e., elastic wave speed). Analytical models have 

confirmed that inertia retards the growth of voids [Poritsky 1952; Ortiz and 

Molinari 1992; Wang 1997; Wu et al. 2003]. Using Equation (1.1) in Chapter 1, 

Antoun et al. [2003] showed that for 0r  up to 10 µm, there are no significant 
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inertia effects. For 0r  greater than 50 µm, however, inertia effects are much more 

pronounced and can impede void growth. The elastic wave speed limitation on 

void growth has not been thoroughly examined, but such limitations have been 

reviewed in the context of dynamic crack growth [e.g., Meyers 1994]. Studies 

within a hollow sphere construct (Appendix B) suggest that material sound-speed 

limitations would be significant for 0Φ  less than 1% and 0r  greater than 25 µm. 

Since these values are not within the parameter space considered in this work, 

sound-speed limitations are not expected to play a significant role in the void 

growth mechanisms.  

A possible explanation for the decreased SSM for larger r  is the 

interaction of loading time-scales, e.g., rampt , with the void transit time, transt . For a 

fixed rampt  or σ& , the load increment over the smaller void is relatively small in 

comparison to the larger void due to the smaller transt . While σ&  at the scale of the 

smaller void appears relatively “slow” (i.e., subcritical regime, ,norm norm critσ σ<& & ), σ&  

at the scale of the larger void appears relatively “fast” (i.e., supercritical regime, 

,norm norm critσ σ>& & ). This results in a larger normΦ&  (Figure 3.8) and lower SSM (Figure 

3.7). For the 6 GPa applied load case in Section 3.3.3, SSM decreased 0.14 GPa 

(<15% of SSM) and normΦ&  increased approximately 200% for 0r  from 1 to 50 µm. 

Void size effects were incorporated in the modification of the CH model.  

The NDI-specific probabilistic particle volume fraction model in Equation 

(3.12) was incorporated into the modified CH model for the purpose of predicting 

small-scale variations in spall strength. The form of the CH model, with explicit 
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dependence on 0Φ , simplified this process. Model predicted SSM variations are 

a direct result of the multi-scale, probabilistic nature of Equation (3.12). At small 

physical domain sizes, there is a large variation in the initial, small-scale particle 

volume fraction 0φ  that feeds the modified CH model. So, SSM variations are 

reflected in 0φ  variations. Satisfactory agreement was demonstrated between the 

modified CH model and the MSS results for the SSM COV versus 
nn

L
L

and the 

extrapolated RVE size. This suggests that detailed microstructural information 

can enhance the predictive capability of spall models.  

Despite the relatively positive results of the mesh size studies, mesh 

sensitivities are considered a source of uncertainty in the larger suite of MSS 

studies. Mesh sensitivities associated with material softening and failure has 

been clearly demonstrated in previous studies [Bazant 1976; Bazant and 

Belytschko 1985]. In dynamic simulations where the material in a mesh element 

softens or fails, the tangential stiffness becomes negative and the wave speed 

can become imaginary. The problem can change from hyperbolic to elliptic and 

becomes ill posed. This inevitably leads to spurious localization of damage into a 

zone of zero volume and convergence with mesh refinement is no longer 

assured [Bazant 1976]. 

The non-local integral approach offers one possibility of eliminating mesh 

sensitivities in finite element analysis while using microstructural information. The 

non-local integral approach consists of replacing a certain variable with its non-

local counterpart obtained by weighted averaging over a spatial neighborhood of 
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each point under consideration [Bazant et al. 2002; Tvergaard et al. 1995]. The 

spatial neighborhood is determined by applying a characteristic length scale. 

Microstructurally-based length-scales that are characteristic of material softening 

or failure response can serve in this capacity. For the studies in this chapter, the 

average particle size or the particle nearest-neighbor distance may serve as 

relevant characteristic length-scales since they participate in the void growth and 

coalescence process. The application of non-local integral approaches to future 

MSS-based spall studies appears promising.  

While spall results from the intersection of tensile release waves created 

by the reflection of initial (shock) compressive stress waves at a free surface, 

only tensile loading was considered in the current study. It has been shown that 

the initial shock compression can cause phase transformations [Meyers et al. 

1992], strain-hardening [Asay et al. 1993], and yield stress alteration upon 

compression-tension load reversal, i.e., Bauschinger effect [Cochran and 

Banner, 1977; Asay et al. 1993]. Phase transformations have been shown to play 

an important role in the spall behavior of iron alloys, influencing the fracture 

mode and the spall strength [Meyers et al. 1992]. Shock-induced hardening, in 

conjunction with a reduced tensile yield stress due to the Bauschinger effect, can 

significantly increase the initial strain in the specimen prior to tensile loading. It is 

recommended that future MSS-based studies incorporate initial compressive 

loading to explore phase transformation, shock-hardening, and the Bauschinger 

effects on spall fracture response.  
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3.5 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Meso-scale simulation (MSS) setup, including applied loading 

conditions, isolated particle region, symmetry constraints, and peak transmitted 

stress measurement. MSS progression depicting the culmination of void growth 

and coalescence to spall. Only the MSS particle region is shown. 
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Figure 3.2: Spall strength metric (SSM), i.e., peak transmitted stress, versus 

initial macro-scopic particle volume fraction for applied loading ( 0σ ) of 2, 4, 6, 8 

GPa.  
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Figure 3.3: SSM for initial macro-scopic particle volume fraction of 5, 11.5% and 

ramp-time of 0, 0.05, 0.5 µs and 0σ  of 2 GPa 
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Figure 3.4: SSM for initial macro-scopic particle volume fraction of 5, 11.5% and 

ramp-time of 0, 0.05, 0.5 µs and 0σ  of 4 GPa 
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Figure 3.5: SSM for initial macro-scopic particle volume fraction of 5, 11.5% and 

ramp-time of 0, 0.05, 0.5 µs and 0σ  of 6 GPa 
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Figure 3.6: Void growth rate versus time,  

for ramp-time of 0 and 0.5 µs and 0σ  of 2, 6 GPa 
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Figure 3.7: SSM versus initial particle radius for 0σ  of 2, 4, 6 GPa 
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Figure 3.8: Normalized void growth rate versus normalized time for initial particle 

radius of 1, 5 µm, and 0σ  of 2, 6 GPa 
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Figure 3.9: Void growth rate versus time, for applied loading rates  

of 6, 12, 24, 60 and 120 GPa/µs 
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Figure 3.10: Applied loading rates versus peak void growth rate.  
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Figure 3.11: SSM versus applied loading rates for 0σ  of 6 GPa 
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Figure 3.12: The comparison of void growth and coalescence at loading rates of 

120 and 12 GPa/µs. The transverse view of the MSS particle region is shown 

(without matrix). The tensile loading wave approaches the particle region from 

the right side. The particles have been subdivided into ten color coordinated 

regions in the loading direction to better track void recruitment downstream (to 

the left). 
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Figure 3.13: Determination of the slope (m) of the SSM versus particle volume 

fraction curves, as part of the construction of the modified Carroll-Holt model. 

The green dashed lines represent fits to the MSS results.  
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Figure 3.14: Determination of the slope (m) of the SSM versus particle volume 

fraction curves as a function of normalized loading rate ( normσ& ). The data in this 

plot is taken from Figure 3.13. In the subcritical regime ( ,norm norm critσ σ<& & ), the slope 

is constant. In the supercritical regime ( ,norm norm critσ σ>& & ), the slope is a logarithmic 

function of the normalized loading rate. 
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Figure 3.15: Comparison of Figure 3.2 results for applied loads of 2, 8 GPa  

with modified CH model in Equation (3.9)  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.456 0.52 0.584 0.647 0.711 0.775 0.839 0.903 0.966 1.03

SSM (GPa)

100 µm
300 µm

 

Figure 3.16: SSM histogram for simulations with length-scales  

of 100 and 300 µm  
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Figure 3.17: SSM COV versus normalized length-scale for MMS and model 

predictions 
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Figure 3.18: The effects of mesh size (2, 4, 5, 10 µm) on the SSM for an applied 

load of 2 GPa, initial particle volume fraction of 11.5%, and initial particle size of 

13 µm. 
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3.6 Tables 

µ  

(GPa) 

A  

(MPa) 

B  

(MPa) 

n  

(none) 

C  

(none) 

0ε&  

(1/s) 

meltT  

(K) 

m  

(none) 

69.0 345 550 0.43 0.023 0.001 100,000 1.0 

 

Table 3.1: Fe-Si matrix shear moduli and Johnson-Cook parameters 

µ  

(GPa) 

0Y  

(MPa) 

9.56 250 

 

Table 3.2: Graphite particles elastic-perfectly plastic parameters 

0ρ  

(gm/cc) 

c  

(km/s) 

0γ  

(none) 

a  

(none) 

1S  

(none) 

2S  

(none) 

3S  

(none) 

7.45 3.98 1.6 0.5 1.58 0 0 

 

Table 3.3: Fe-Si matrix Gruneisen EOS model parameters 

0ρ  

(gm/cc) 

c  

(km/s) 

0γ  

(none) 

a  

(none) 

1S  

(none) 

2S  

(none) 

3S  

(none) 

2.20 3.90 0.24 0 2.16 1.54 -9.43 

 

Table 3.4: Graphite particles Gruneisen EOS model parameters 
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4.0  Direct numerical simulations (DNS) of small-scale spall experiments on 

nodular ductile iron (NDI)  

4.1 Introduction 

Advances in computing capabilities now permit direct numerical 

simulations (DNS) of the material meso-structures of small-scale specimens 

under dynamic loading. DNS capture the complex interactions not readily 

accessible by experimental diagnostics or predictable by analytical models. 

Several studies have demonstrated the effectiveness of DNS in elucidating the 

dynamic deformation [Romanova et al. 2003, Zhang et al. 2005] and the ductile 

spall [Benson 1993, Tonks et al. 1995, Tonks 1996, Vogler and Clayton 2007, 

Becker et al. 2007] of materials. Since these previous studies were based on 

plane strain analyses without representative material mesostructures, they did 

not rigorously capture the complex, three-dimensional interactions that occur 

during the spall process. Computational and physical limitations have also 

prevented the intimate coupling of simulations with experiment, preventing the 

validation of DNS in previous studies.  

The first objective of this chapter is to design and execute small-scale 

spall experiments that can be used to validate closely-coupled three-dimensional 

DNS. These experiments probe the effects of specimen geometry on nodular 

ductile iron (NDI) spall behavior under impulsive loading. Specimen geometry 

influences the location of the peak intensities of tensile release waves created by 

the reflection of a compression wave at a specimen free surface. At regions of 



  87 

  

localized hydrostatic tensile loading, voids nucleated at the NDI second-phase 

particles can grow and coalesce to form spall regions. Measurements of the 

geometry of the spalled regions and the resulting fragment(s) can serve as a 

validation metric for closely-coupled DNS. Wave propagation is also influenced 

by the evolution of damage. At the culmination of void coalescence, an unloading 

wave emanates from the spalled regions. External measurements of the 

specimen velocity can capture the unloading wave and can also serve as a 

validation metric for closely-coupled DNS. 

The second objective of this chapter is to perform three-dimensional DNS 

of the small-scale spall experiments to gain insights on the response of NDI to 

explosive loading. DNS can improve the understanding of the complex 

interactions resulting from the combination of impulsive loading and 

heterogeneous void structures, not otherwise accessible by experimental 

diagnostics. While it is known that void growth is spatially non-uniform and 

enhanced in void-rich regions of the material, these mechanisms are not 

accurately portrayed by previous analytic models of dynamic void growth. 

Analytic models of dynamic void growth [Poritsky 1952; Carroll and Holt 1972; 

Johnson 1981; Banks-Sills and Budiansky 1982; Ortiz and Molinari 1992] are 

based on a single, isolated void and do no capture the void growth and 

coalescence enhancements caused by the presence of neighboring voids. DNS 

can provide insights into damage evolution both near to and peripheral to the 

spalled regions, enabling the development of predictive void growth and 

coalescence models.  The predictions of these closely-coupled simulations can 
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be directly compared to measurements of the small-scale spall experiments, as 

part of validating the DNS methods.  

4.2 Methods 

Methods were developed to compare the small-scale experimental data to 

DNS results. Key measurements from the small-scale spall experiments were 

directly compared to DNS predictions, as part of validating DNS methods. The 

spall strength, based on the free surface velocity (FSV) signal, and the primary 

spall fragment geometry were the main validation metrics. In order to improve the 

understanding of void growth in materials with complex microstructures, DNS 

results for the mean and peak void volume fraction rate were examined.  

4.2.1 Small-scale spall experiments  

Small-scale spall experiments were designed considering limitations for 

spall loading mechanism and diagnostics, as well as computational resources 

necessary for an integrated DNS. Previous experimental configurations were 

considered as part of constraining the design of these small-scale spall 

experiments. An explosive-drive spall experiment developed at Los Alamos 

National Laboratory (LANL) was selected [Mason 2007]. In this experiment, a 

circular plate specimen is backed by a center-detonated explosive of the same 

diameter. The FSV is tracked with a photonic doppler velocimetry (PDV) system. 

Spall fragments are decelerated in a fragment soft-capture system, reducing 

unintended damage subsequent to primary loading. FSV and spall fragment data 

were important DNS validation metrics.  

4.2.1.1 Specimen geometry 
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Based on the computational resources, the original LANL explosive-drive 

spall experiment was scaled-down. Small-scale spall experiments in this study 

consisted of 4.0 mm diameter circular plates backed with a 4.0 mm diameter x 

2.0 mm thick explosive charge, as shown in Figure 4.1 schematic. Three 

samples were tested, each with different thicknesses (1.0, 1.5, 2.0 mm). This 

resulted in a computational mesh model size of more than 50,000,000 elements 

using an element size of 5 µm. The computational model is discussed further in 

the Section 4.2.2. 

4.2.1.2 Fragment soft-cature 

A soft-capture setup consisting of open-cell polyurethane foam (0.05 

gm/cc) was utilized to prevent secondary damage to the fragmented specimens. 

To prevent fragment corrosion after experiments and prior to macroscopic 

measurements, they were cleaned with rubbing alcohol, and then placed in 

plastic bags that were stored in desiccant-containing jars. Comparisons of the 

soft-captured and predicted fragments provided another anchoring metric for the 

DNS. Measurements of the primary spall fragment were performed using a 

macroscopic (optical) camera system. The number of measurements on each 

fragment varied due to its size or configuration.  

4.2.1.3 Photonic doppler velocimetry (PDV) system 

A PDV system was used to measure the FSV time-history for direct 

comparison to DNS predictions. PDV works by measuring the Doppler shift in 

frequency of scattered light [Strand et al. 2006]. For these experiments, a single 

PDV probe was directed at the center of the specimen free surface. FSV time-
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histories over 10 microseconds with a temporal resolution of better than 50 

nanoseconds were captured and compared to simulation predictions. Due to the 

small ejecta that immediately jumps off of the specimen free surface when the 

shock arrives, a velocity envelope is typically measured by the PDV system after 

the initial jump-off velocity (peak). These small ejecta are separate and distinct 

from the primary spall fragment, which typically forms later in time due to fracture 

at a finite depth from free surface. Due to the triggering delay, PDV data was 

temporally out-of-phase from the simulation data. For the purposes of 

comparison, the predicted FSV was aligned to PDV data at the initial jump-off 

velocity peak. 

4.2.1.4 Spall strength calculations 

An established method [Cochran and Banner 1977; Antoun et al. 2003] for 

determinining the spall strength, spallσ  , from the FSV time-histories was modified 

to account for the damaged state of the material:  

 
0 0

1
2spall fsc uσ ρ= ∆  (4.1)

 ( )0 0 01ρ ρ= −Φ  (4.2)
 ( )0 0 01c c= −Φ  (4.3)

 

Where 0ρ  and 0ρ  (7.45 gm/cc) are the damaged and undamaged matrix density, 

and 0c  and 0c  (3.98 km/s) are the damaged and undamaged matrix wave speed. 

fsu∆  is the pullback velocity and it is determined from the PDV data as the 

difference between the peak velocity and the first minima (due to spall pulse 

arrival) following the peak velocity. 0Φ  (0.115) is the initial macro-scopic particle 
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volume fraction, which is used to calculate 0ρ  and 0c . This modification was 

based on DNS predictions of void nucleation, without significant growth, in the 

material between the spall plane and free surface. Spall strength calculations 

were performed assuming the upper and lower bounds of the FSV envelope. The 

maximum spall strength was calculated with the lower bound of the FSV 

envelope (i.e., maximum fsu∆ ) and the minimum spall strength was calculated 

with the upper bound of the FSV envelope (i.e., minimum fsu∆ ).  

4.2.2 Direct numerial simulation (DNS) description 

4.2.2.1 Geometry 

DNS geometry was based on the small-scale spall experiments. Circular 

NDI plates with a 4.0 mm diameter and different thicknesses (1.0, 1.5, 2.0 mm) 

were backed with a 4.0 mm diameter x 2.0 mm thick explosive charge. The air 

surrounding the NDI plate and the explosive was also modeled. This allowed the 

explosive gas products to advect through the air and vent through the outflow 

boundary condition. The outflow boundary condition was imposed to allow 

material to leave the simulation space without restriction, i.e., in a manner that 

was consistent with the actual experiments.  

4.2.2.2 Particle structure 

In order to accurately study spall behavior in NDI, it is important to initiate 

the DNS with a representative and three-dimensional particle structure. The 

necessity for three-dimensional particle structure was established in Chapter 1. 

Numerical particle generation tools developed in Chapter 2 were used to 
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accomplish this task. Approximately 20,000 (1 mm thick) to 40,000 (2 mm thick) 

particles were incorporated in these DNS.  

4.2.2.3 Explosive loading 

Impulsive loading on the plates was supplied entirely by the detonating 

explosive charge. A 1.65 gm/cc density variant of pentaerythritol tetranitrate 

(PETN) was employed as the explosive for these small-scale spall experiments. 

A density-based scaling was performed on 1.50 gm/cc and 1.75 gm/cc density 

PETN data [Wilkins 1999] to obtain the explosive energy per unit volume, 

Chapman-Jouget (CJ) pressure, detonation velocity, and the Jones-Wilkins-Lee 

(JWL) equation-of-state (EOS) for the explosive detonation products. Relevant 

PETN properties, including the JWL model parameters, are summarized in Table 

4.1.  

4.2.2.4 Sector (volume) and tracer (point) variable 

tracking 

Due to the axisymmetric loading, heterogeneous particle structure, and 

resulting deformation gradient, the spatial domain of the specimen was radially 

and longitudinally partitioned into sectors for regional tracking of void volume 

fraction evolution. The radial and longitudinal partitioning was set at increments 

of 500 µm. Beyond the central core, the sectors were actually donut-shaped and 

their volume increased with increments in radial direction. Sector tracking of the 

void volume fraction evolution improved understanding of the spatial evolution of 

damage and formation of primary spall fragments in the simulations. Volume-
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weighted sums of void volume fraction rate were taken to determine mean sector 

response: 
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Where sectorφ&  is the sector mean of the void volume fraction rate, ,elem iφ&  is the 

element-based void volume fraction rate of the ith element contained within that 

sector, ,elem iV  is the volume of the ith element contained within that sector, and 

,sector elemN  is the total number of elements in that sector. 

Lagrangian tracers were placed on specimen for the purpose of 

measuring the FSV time-history. Since the tracers followed the material, it was 

possible for them to advect to adjacent elements. The tracer measured the 

velocity of the element they resided in. Predicted FSV time-history was compared 

directly to experimentally-measured data.  

4.2.2.5 NDI component phase material models 

Elasticity, yield surface, hardening, EOS, and failure models were 

separately specified for the Fe-Si alloy matrix and graphite particle phases. 

Model parameters were determined from a combination of experiments and 

literature. Since the NDI component phase material models used here were 

identical to those in Chapter 3, the reader is referred there for further details.  

4.2.2.6 Finite element analysis code 
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Simulations were performed using LLNL’s three-dimensional arbitrary-

Lagrange-Eulerian (ALE) code, ALE3D [Nichols 2007]. ALE3D was used for 

these simulations because it permits seeding of the void nucleating particles 

across mesh lines, it handles large deformations of the matrix material around 

the growing void while still capturing the void-matrix interface, and it permits void 

coalescence as it culminates to spall fracture. Neither a lagrangian-only or 

eulerian-only code can adequately simulate these material behaviors. DNS had 

approximately 50,000,000 elements with an element size of 5 µm in the particle 

region. Elements were spatially graded outside of the particle region to improve 

computational efficiency.  

A typical DNS of the small-scale spall experiment is depicted in Figure 4.2. 

The pressure fringe plot of the progressing detonation wave in the explosive 

charge is shown to induce tensile release waves on the specimen top and side 

free surfaces. The interaction of these tensile release waves leads to void 

nucleation, growth, and coalescence in the the NDI specimen.   

4.3  Results 

4.3.1 Small-scale spall experiments 

FSV measurements for each of the three specimen thicknesses are 

shown in Figures 4.3, 4.4, and 4.5. FSV data is reported in terms of a velocity 

envelope. The velocity envelope is a direct result of the small ejecta from 

specimen free surface and had been previously discussed in Section 4.2.1. 

Upper bound, lower bound, and mean spall strengths were calculated based on 

Equation (4.1) and reported in Table 4.2. For the 1 mm thick specimen, the 
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maximum and minimum fsu∆ are 216 m/s and 182 m/s, respectively. This results 

in upper and lower bound spall strengths of 2.51 GPa and 2.11 GPa, 

respectively. The mean spall strength is 2.31 GPa. For the 1.5 mm thick 

specimen, the maximum and minimum fsu∆ are 212 m/s and 180 m/s, 

respectively. This results in upper and lower bound spall strengths of 2.46 GPa 

and 2.09 GPa, respectively. The mean spall strength is 2.28 GPa. For the 2 mm 

thick specimen, the maximum and minimum fsu∆ are 204 m/s and 173 m/s, 

respectively. This results in upper and lower bound spall strengths of 2.37 GPa 

and 2.01 GPa, respectively. The mean spall strength is 2.19 GPa. A slight 

decrease in the mean spall strength with increasing thickness is observed, 

especially between the two thicker specimens. However, all calculated mean 

spall strengths are within the spall strength bounds for all specimen thicknesses. 

Moreover, the upper and lower bound spall strengths do not vary by more than 

+/-10% of the mean value for the three configurations. 

Macroscopic images of the primary spall fragments with diametric 

measurements for each of the three configurations are shown in Figures 4.6a-

4.6c. Mean diametric measurements were performed on the primary spall 

fragment “bottom” surface, i.e., side initially facing explosive charge, and “top” 

(free) surface. Only the primary spall fragment produced in the 1.0 mm thick 

specimen had portions of both the top and bottom surfaces. Primary spall 

fragments from the 1.5 and 2 mm specimens had just the top surfaces remaining. 

For the 1 mm thick specimen, the mean diameter of the top and bottom surfaces 

was 3.7 mm and 2.5 mm, respectively. For the 1.5 mm thick specimen, the mean 
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diameter of the top surface was 3.6 mm. For the 2.0 mm thick specimen, the 

mean diameter of the top surface was 3.5 mm.  

4.3.2 DNS results 

4.3.2.1 DNS results with an experimental analog 

FSV predictions for each of the three specimen thicknesses are shown 

with test data in Figures 4.3, 4.4, and 4.5. Spall strengths were calculated based 

on Equation (4.1) and reported in Table 4.3. Predicted spall strength for the 1.0 

and 1.5 mm thick specimens fell within the experimental lower and upper bound 

spall strengths. For the 1.0, 1.5, and 2.0 mm thick specimens, the error in 

predicted spall strength is 1.3%, 7.9%, and 18.7%, respectively. Error increased 

with increasing specimen thickness. 

Measurements of the predicted primary spall fragments from EPS fringe 

and material boundary plots are in Figure 4.7a-4.7c. Thresholding EPS fringe 

plots at the matrix failure strain (0.4) permitted visualization of the primary spall 

fragment boundaries, which consisted of varying levels of void- and shear (EPS)-

related damage. For the 1 mm thick specimen, the diameter of the top and 

bottom surfaces was 3.8 mm and 2.3 mm, respectively. For the 1.5 mm thick 

specimen, the mean diameter of the top surface was 3.7 mm. For the 2.0 mm 

thick specimen, the mean diameter of the top surface was 3.4 mm. For the 1.0 

mm thick specimen, the EPS path did not percolate completely at the mid-

thickness, but rather abruptly followed a localized EPS band to the inner surface. 

In order to visualize the primary spall fragment for the 2.0 mm thick specimen, a 

material boundary plot supplemented the EPS fringe plot due to the significant 
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void-related damage. In fact, the most significant void growth is observed in 

Figure 4.7c. SEM studies on the 2.0 mm thick specimen revealed significant void 

growth on the specimen surface, confirming that spall was the failure mode 

(Figure 4.8). Figure 4.8 also illustrates the central role of the second-phase 

particles in void nucleation and growth in NDI. 

4.3.2.2 DNS results without an experimental analog- 

regional void growth rate 

Due to the axisymmetric loading, heterogeneous particle structure, and 

resulting deformation gradient, the spatial domain of the specimen was radially 

and longitudinally partitioned into sectors for regional tracking of void volume 

fraction rate. Peak sector and overall average void volume fraction rate versus 

time are shown in each Figure 4.9, 4.10, and 4.11 for the three specimen 

configurations. The peak sector was defined as the sector with the highest void 

volume fraction. For the 1 mm thick specimen, the maximum void volume fraction 

rate over the time-history of the peak sector and average are 0.68 and 0.14 1sµ − , 

respectively. The ratio of peak-to-average values is 4.9. For the 1.5 mm thick 

specimen, the maximum void volume fraction rate over the time-history of the 

peak sector and average are 0.72 and 0.18 1sµ − , respectively. The ratio of peak-

to-average values is 3.9. For the 2 mm thick specimen, the maximum void 

volume fraction rate over the time-history of the peak sector and average are 

0.68 and 0.13 1sµ − , respectively. The ratio of peak-to-average values is 5.2. 

While the maximum void volume fraction rate over the time-history of the peak 
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sector was approximately 0.7 1sµ − for all specimen thicknesses, there was some 

variation in the peak-to-average values.  

4.4 Discussion 

A capability is demonstrated to perform and integrate three-dimensional 

DNS with small-scale spall experiments. This capability is significant because it 

enables the tailoring and assessment of material microstructures under impulsive 

loading, as part of improving their resistance to spall fracture. Close-coupling of 

the simulations with experiments also enables the development of predictive 

structure-property models. 

Comparisons of the predicted primary spall fragment dimensions and spall 

strength yielded good agreement with experiments. Observed geometric 

changes in primary spall fragment were a consequence of wave interaction 

alterations resulting from differences in the initial specimen thickness. Due to the 

center-detonation of the explosive charge, there is limited ability for the side 

(furthest radial extent) tensile release wave from the radial free surface to interact 

with the top tensile release wave in the 1 mm thick specimen. In the 2 mm thick 

specimen, the more prominent interaction of the side and rear tensile release 

waves result in substantially more void growth in the spall region. This latter point 

is qualitatively evident in material boundary plots of the spalled 2mm thick 

specimen (Figure 4.7c). DNS spall strength predictions fell within the 

measurement uncertainty for all but the 2 mm thick specimen. A comparison of 

simulated and measured FSV time-histories (Figure 4.5) reveal that despite good 
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agreement, the the slight underprediction at the peak velocity and overprediction 

at the final velocity influences this outcome.     

The DNS demonstrates the spatial localization of void growth in the 

spalled regions of the specimen. As the damage evolves in the specimen, overall 

energy expenditures are focused in the spalled regions. The peak void growth 

rate in the spalled region was amplified four to five times that of the mean void 

growth rate for all specimen thicknesses. DNS permits detailed damage 

quantification, enabling the development of predictive void evolution models and, 

possibly, the development of new ultrafast, in-situ diagnostics for dynamic void 

growth characterization [Lorenzana et al. 2007]. 
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4.5  Figures 

 

 

 

 

 

 

Figure 4.1: Schematic of small-scale spall experiments  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Direct numerical simulation (DNS) of nodular ductile iron (NDI) plate 

backed with detonating explosive charge. Pressure fringe plot of progressing 

detonation wave shown at left. Material boundaries of the particle and matrix 

phase in NDI specimen shown at right. 
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Figure 4.3: Plots of the measured and simulated free surface velocity (FSV) time-

history at the center for the 1.0 mm thick specimen. The measured data is 

reported in terms of a velocity envelope due to the uncertainty in the photonics 

doppler velocimetry (PDV) diagnostics.  
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Figure 4.4: Plots of the measured and simulated FSV time-history at the center 

for the 1.5 mm thick specimen. The measured data is reported in terms of a 

velocity envelope due to the uncertainty in the PDV diagnostics.  
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Figure 4.5: Plots of the measured and simulated FSV time-history at the center 

for the 2.0 mm thick specimen. The measured data is reported in terms of a 

velocity envelope due to the uncertainty in the PDV diagnostics.  
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Figure 4.6: Top view (left) and bottom view with diametric measurements (right) 

of primary spall fragments for differing specimen thicknesses: (a) 1.0 mm, (b) 1.5 

mm, (c) 2.0 mm. There are two diametric measurements in (a) corresponding to 

the top (at left) and bottom surface. There is one diametric measurement for 

each (b) and (c) corresponding to the top surface (at left).  
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Figure 4.7: Equivalent plastic strain (EPS) fringe plots for the differing specimen 

thicknesses: a. 1.0 mm, b. 1.5 mm, c. 2.0 mm. A material boundary plot is also 

shown for the 2.0mm thick specimen. Primary spall fragment measurements are 

guided by using the EPS fringe plots thresholded (red) at a value of 0.4. For the 

2.0 mm thick specimen, the material boundary plot showing voided regions 

facilitates measurements.
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Figure 4.8: Scanning electron microscopy image of the spall surface on the 

primary spall fragment from the 2.0 mm thick specimen. Second-phase particles 

and particle remnants occupy voids.   
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Figure 4.9: Void volume fraction rate versus time for the 1.0 mm thick specimen. 

The ratio of peak-to-average values is 4.9. 
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Figure 4.10: Void volume fraction rate versus time for the 1.5 mm thick specimen. 

The ratio of peak-to-average values is 3.9.  
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Figure 4.11: Void volume fraction rate versus time for the 2.0 mm thick specimen. 

The ratio of peak-to-average values is 5.2. 
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4.6 Tables 

 

0E  

(GPa) 

 

CJP  

(GPa) 

 

D  

(km/s) 

 

A  

(GPa) 

 

B  

(GPa) 

 

1R  

(none) 

 

2R  

(none) 

 

ω  

(none) 

 

9.2 

 

27.0 

 

8.0 

 

625.3 

 

23.39 

 

5.25 

 

1.60 

 

0.28 

 

Table 4.1: PETN explosive JWL EOS parameters 

 

 

,1 mmspallσ (GPa) 

 

2.11-2.51, 
mean 2.31 

 

,1.5 mmspallσ (GPa) 

 

2.09-2.46, 
mean 2.28 

 

,2 mmspallσ (GPa) 

 

2.01-2.37, 
mean 2.19 

 

Table 4.2: Experimental spall strength range and mean for each specimen 

based on the FSV time-history 
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,1 mmspallσ (GPa) 

 

2.28 

 

,1.5 mmspallσ (GPa) 

 

2.10 

 

,2 mmspallσ (GPa) 

 

1.78 

 

Table 4.3: DNS spall strength predictions for each specimen  

based on the FSV time-history 
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Appendix A: Relative growth rates of spherical and cylindrical voids  

The objective of Appendix A is to determine the relative growth rates of 

spherical and cylindrical voids.This will be accomplished by deriving relationships 

for the void volume fraction rate of each the spherical and cylindrical voids. A 

single spherical void with radius, sa , is centered in a finite spherical matrix region 

with radius, sb  (Figure A.1). A single cylindrical void with radius, ca , and length, 

cL , is centered in a finite cylindrical matrix region with radius, cb  with identical 

length (Figure A.2). The void volume fraction for a spherical void, sφ , and a 

cylindrical void, cφ , is given by 

 33

3

4
3

4
3

s s
s

ss

a a
bb

π
φ

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 (A.1)

 22

2
c c c

c
c c c

a L a
b L b

πφ
π

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 (A.2)

 1
3

s s sa bφ=  (A.3)

 1
2

c c ca bφ=  (A.4)

 

Taking the derivative of ca  and sa  with respect to time yields: 

 1
3

2
33

s s
s s s

s

ba bφ φ
φ

= +
&

&&  (A.5)

 1
2

1
22

c c
c c c

c

ba bφ φ
φ

= +
&

&&  (A.6)

 

Substituting Equation (A.3) into Equation (A.5) and Equation (A.4) into Equation 

(A.6) yields:  
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 1
3

3
s s

s s s
s

aa bφ φ
φ

= +
&

&&  (A.7)

 1
2

2
c c

c c c
c

aa bφ φ
φ

= +
&

&&  (A.8)

 

An additional relationship between sa&  and sb& , and  ca&  and cb& s acquired through 

the assumption that the matrix volume for the spherical void case, ,s mV , and the 

cylindrical void case, ,c mV , is incompressible 

 ( )3 3
,

4
3s m s s s

V b aπ= −  (A.9)
 2 2

, 3 3 0s m s s s sV b b a a= + =&& &  (A.10)
 2

2
s

s s
s

ab a
b

=& &  (A.11)

 ( )2 2
,c m c c cV b a Lπ= −  (A.12)

 
, 2 2 0c m c c c cV b b a a= + =&& &  (A.13)

 c
c c

c

ab a
b

=& &  (A.14)

 

Substituting Equation (A.11) into Equation (A.7), Equation (A.14) into Equation 

(A.8), and solving for sφ&  and cφ&  yields 

 
( )3 1s

s s
s

b
b

φ φ= −
&

&  (A.15)

 
( )2 1c

c c
c

b
b

φ φ= −
&

&  (A.16)

 

Typically in two-dimensional simulations, the void volume fraction and initial 

radius is assumed to be the same as the three-dimensional case 

 s cφ φ=  (A.17)
 s ca a=  (A.18)
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Taking the ratio of Equation (A.15) and Equation (A.16) and substituting Equation 

(A.17) leads to  

 3
2

s s c

c c s

b b
b b

φ
φ

=
& &

& &  (A.19)

 

Also, setting Equation (A.1) equal to Equation (A.2) and substituting Equation 

(A.18) leads to  

 3

2
s

s
c

ba
b

=  (A.20)

 

It is now necessary to apply a loading condition to the spherical and cylindrical 

voids. A hydrostatic stress, p , is prescribed at the outer bound of each of the 

voids. The pressure is assumed to be equal for both cases. The work rate due to 

this loading for the spherical and cylindrical voids is 24 s sp b bπ &  and 2 s sp b bπ & , 

respectively. The work rate is assumed to be equal for these two cases, resulting 

in 

 
22

s c c

sc

b L b
bb

=
&

&  (A.21)

 

Substituting Equation (A.21) into Equation (A.19) yields 

 2

3

3
4

s c c

sc

L b
b

φ
φ

=
&

&  (A.22)

 

And then substituting Equation (A.20) into Equation (A.22) provides a relatively 

simple relationship for the ratio of growth rates for spherical and cylindrical voids 
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 3
4

s c

sc

L
a

φ
φ

=
&

&  (A.23)

 

In order to develop a relationship for cL , we need to first relate ca  to cb . The void 

volume fraction for the model material of this study, nodular ductile iron (NDI) 

(0.115), is substituted into Equation (A.4) 

 

( )
1
2

2.95
0.115

c
c c

ab a= =  (A.24)

 

 In order to satisfy plane-strain conditions, one would expect that cL  be at least 

as large as cb , if not larger. If they are set equal and cL  is substituted into 

Equation (A.23) 

 ( )3 2.95
2.21

4
cs

sc

b
a

φ
φ

= =
&

&  (A.25)

 

s

c

φ
φ

&

&  is 2.21. This assumes that a , φ , p , and work rate between the spherical and 

cylindrical void are equal. Energy (work rate) arguments do seem more 

appropriate for this case. Also, setting cL  equal to cb  is a relatively conservative 

assumption. If cL   is set to be an integer multiple of cb , then s

c

φ
φ

&

&  would increase 

by that same integer multiple. 
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Figure A.1: Spherical void with radius, sa , centered 

in a finite spherical matrix with radius, sb . 

 

 

 

 

 

 

 

 

 

Figure A.2: Cylindrical void with radius, ca , centered 

in a finite cylindrical matrix with radius, cb . 
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Appendix B: Matrix sound-speed limitations on void growth  

The objective of Appendix B is to determine if the matrix sound-speed 

limits void growth. This will be accomplished by deriving a relationship for the 

void radius time rate-of-change and checking if it initially exceeds the matrix 

material sound-speed. For this, a single spherical void with radius, sa , is 

centered in a spherical matrix region with radius, sb  (Figure A.1). The void 

volume fraction, sφ , is given by: 

 33

3

4
3

4
3

s s
s

ss

a a
bb

π
φ

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 (B.1)

 1
3

s s sa bφ=  (B.2)

 

The subscript denoting that the volume fraction is that of a sphere has been 

dropped since only spheres are being considered in Appendix B. Taking the 

derivative of sa  with respect to time yields: 

 1
3

2
33

s s
s s s

s

ba bφ φ
φ

= +
&

&&  (B.3)

 

Substituting Equation (B.2) into Equation (B.3) yields:  

 1
3

3
s s

s s s
s

aa bφ φ
φ

= +
&

&&  (B.4)

 

An additional relationship between sa&  and sb&  is acquired through the assumption 

that the matrix volume, ,s mV , is incompressible: 

 ( )3 3
,

4
3s m s sV b aπ= −  (B.5)
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 2 2
, 3 3 0s m s s s sV b b a a= + =&& &  (B.6)

 2

2
s

s s
s

ab a
b

=& &  (B.7)

 

Substituting Equation (B.7) into Equation (B.4) yields: 

 1 2
3

23 3
s s s s s

s s s s s
s s s

a a aa a a
b

φ φφ φ
φ φ

= + = +
& &

& & &  (B.8)

 

( )3 1
s s

s
s s

aa φ
φ φ

=
−

&
&  (B.9)

 

In order to calculate an initial sa& , a range of values are used for sa  (1, 25, 50, 

100 µm) and sφ  (0.01, 0.05, 0.1, 0.15). sφ&  is set to be the maximum value 

predicted in Figure 3.6 (4.5/µs) and is constant. sa&  is normalized by the matrix 

sound-speed, c  (0.398 cm/ µs) ( sa
c
&

) and reported as a function of sa  and sφ  

(Figure B.1). Based on this simple model, sound-speed limitations may become a 

concern  (i.e., 1sa
c
≥

&
) at volume fractions less than 0.05 and void radii greater 

than 25 µm. As sφ  decreases, sa
c
&

 increases rapidly due to the asymptote at 

0sφ = . Changes to sa&  correlate directly with changes to sa  , assuming that all 

other parameters are fixed. Based on these results, sound-speed limitations are 

not expected to affect parameter studies in Chapter 3 since no individual study 

considered sφ  less than 0.01 and sa  greater than 25 µm. For the parameters 

considered in Chapter 3, sa
c
&

 is not expected to exceed approximately 0.5.    
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Figure B.1: The effects of void volume fraction and void radius on sa
c
&
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Appendix C: Wave propagation 

One dimensional wave propagation 

One dimensional forms of the conservation of momentum, ,x uσ ρ= &&  , 

stress-strain, Eσ ε= , and the strain-displacement, ,xuε =  , equations provide the 

basis for one dimensional wave propagation in an elastic solid. Substituting the 

strain-displacement relationship into Hooke’s Law, ,xEuσ = , and taking the 

derivative wrt position yields , ,x xxEuσ = . Equating latter equation with the 

conservation of momentum equation gives  

 
, 2

1

b

xxu u
c

= && (C.1)

 

Where the longitudinal speed is b
Ec
ρ

= . The solution for the wave equation is 

well-known: 

 ( ) ( ) ( ) , b bu x t f x c t g x c t= − + +  (C.2)
 

This derivation assumes no body forces and small strains. The application of 

these equations to the split Hopkinson pressure bar experiments is discussed in 

the next section. 

As part of this research, split Hopkinson pressure bar (SHPB) experiments 

were conducted to determine the strain-hardening response of materials at 

strain-rates of approximately 1,000-5,000/sec. SHPB experiments were 

essentially one dimensional uniaxial (stress) compression experiments. The one 
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dimensional wave equation, discussed in the previous section, is applicable to 

developing SHPB relationships relating the strain gage data to the specimen 

stress and strain-rate. 

 Starting with Equation (C.2), the displacement gradient and rate can be 

defined at each incident (subscript 1) and transmitter (subscript 2) bars: 

 ( ) ( ) ( )1 2    b b bu f x c t g x c t u h x c t= − + + = −  (C.3)
 ( ) ( )1 2           b b i r b b tu c f g c u c h cε ε ε′ ′ ′= − + = − + = − = −& &  (C.4)
 1 2                          i r

u uf g h
x x

ε ε∂ ∂′ ′ ′= + = + =
∂ ∂

 (C.5)

 

where, iε  is the incident strain, rε  is the reflected strain, and tε  is the transmitted 

strain. The strain data is taken directly from strain gages affixed to the incident 

and transmitter bar. The specimen strain-rate and stress can now be defined: 

 ( ) ( )s 1 2 t
1 b

i r
s s

cu u
L L

ε ε ε ε= − = − + +& & &  (C.6)

 ( )0 t

2
i r

s

EA
A

ε ε ε
σ

+ +
=  (C.7)

 

where, sε&  is the specimen strain-rate, sL  is the instantaneous specimen length, 

sσ  is the specimen stress, E  is the Young’s modulus of the incident and 

transmitter bars, 0A  is the initial cross-sectional area of the incident and 

transmitter bars, and A  is the instantaneous specimen cross-sectional area. 

Since there is a finite distance between incident and transmitter bar strain gages, 

iε , rε and tε are out-of-phase. Therefore, strain gage data must be aligned before 

strain-rate or stress is calculated. 
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Three-dimensional wave propagation 

For general wave propagation in an elastic solid, the three-dimensional 

forms of the conservation of momentum, stress-strain, and strain-displacement, 

equations are utilized, as well as a form for the displacement: 

 ,ij j iuσ ρ= &&  (C.8)
 2ij ij kk ijσ µε λε δ= +  (C.9)
 ( ), ,

1
2ij i j j iu uε = +  (C.10)

 ( ), ( )i i l lu x t d f p x ct= −  (C.11)
 

where, id  is the displacement direction, lp  is the propagation direction of the 

disturbance, and c  is the speed of the propagating disturbance. Temporal and 

spatial derivatives of Equation (C.11) lead to: 

 2 ( )i i l lu c d f p x ct′′= −&&  (C.12)
 , ( )i j i j l lu d p f p x ct′= −  (C.13)

 

Substituting these expressions into Equation (C.10) and then Equation (C.9) 

yields: 

 ( )1 ( )
2ij l l i j j if p x ct d p d pε ′= − +  (C.14)

 ( ) ( ) ( )ij i j j i k k ij l ld p d p d p f p x ctσ µ λ δ⎡ ⎤ ′= + + −⎣ ⎦  (C.15)
 

Taking the spatial derivative of Equation (C.15) and substituting terms into (C.8): 

 ( )( ) ( ), ( )ij j i k k i k k l lp p d d p p f p x ctσ µ λ µ ′′⎡ ⎤= + + −⎣ ⎦  (C.16)
 2 ( )i i l lu c d f p x ctρ ρ ′′= −&&  (C.17)
 ( )( ) ( ) 2

,ij j i i k k i k k iu p p d d p p c dσ ρ µ λ µ ρ⎡ ⎤= → + + =⎣ ⎦&&  (C.18)
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For shear waves, d p⊥
% %

 and so, 2
i i sd c d c µµ ρ

ρ
= → = . For longitudinal waves,  

d p
% %

and so, rearrange equation form to ( ) ( ) ( ) 2
i k k i k k id p p d p p c dµ λ µ ρ⎡ + + ⎤ =⎣ ⎦ .  

So, ( ) ( )2 2
2i i ld c d c

µ λ
µ λ ρ

ρ
+

+ = → = . 
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Appedix D: Shock compression of solids 

Shock waves can form due to the compressibility of solids at very high 

pressures (>5 GPa) and are important to dynamic fracture modes, especially 

spall. Basic elements of the shock compression of solids will be developed and 

discussed below. These topics include the Rankine-Hugoniot jump conditions, 

including equation of state (EOS), and strength under uniaxial strain conditions.  

Rankine-Hugoniot jump conditions 

Derivation of the Rankine-Hugoniot jump conditions are for plane, one 

dimensional steady shock waves assuming no heat flow and no external heat 

sources. Considering a steady, planar shock wave with velocity, sU , propagating 

through a tube of material. Where ρ  is the density, u   is the particle velocity,  P  

is the pressure, and E  is the internal energy per unit mass. The mass in the tube 

being swept over by the shock on the right in tδ  is 1 sU A tρ δ  and the mass that 

leaves the shock front in tδ  is ( )2 2sU u A tρ δ− . These quantities are set equal, 

resulting in expression for mass conservation: 

 ( )1 2 2s sU U uρ ρ= −  (D.1)
 

The force on the right of the shock is zero ( 1 0P = ), while the force behind the 

shock is 2P A . This force is equated with the time rate change of momentum, 

where the mass is 1 sU A tρ δ  and the velocity is 2u , resulting in the expression for 

momentum conservation: 
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( ) ( )

}

1 2

2

velocitymass

sU A t u

P A
t

δ ρ δ

δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠=

64748

 
(D.2)

 2 1 2sP U uρ=  (D.3)
 

The change in energy is in terms of only the kinetic and internal energies, and is 

just the work (force, 2P A   x distance, 2u tδ ) done on the material. This results in 

the expression for energy conservation: 

 

( ) ( )( )

kinetic energy
internal energy

2
2 2 1 2 1 2 1

1
2 s sP Au t U A t u U A t E Eδ ρ δ ρ δ= + −

6447448
644474448

 (D.4)

 ( )2
2 1 1 22

PE E v v− = −  (D.5)

 

where v  is the specific volume and can be related to the density as 2 1

1 2

v
v

ρ
ρ

= . 

In addition to the mass, momentum and energy conservation equations, 

above, a fourth equation is needed in order to solve for and relate all four 

variables. The approach has typically been to empirically relate the shock 

velocity to the particle velocity in the following polynomial form through 

experimentation: 

 2
0 1 2 ...sU C S u S u= + + +  (D.6)

 

where, 0C  is the sound velocity in material at zero pressure. For most metals, the 

second and higher order coefficients terms are negligible and the shock-particle 

velocity relationship reduces to a linear form, i.e., 0 1sU C S u= + . Marsh et al. 
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[1980] contains a significant amount of EOS data on both metallic and non-

metallic materials. 

Strength under uniaxial strain conditions 

In order to evaluate the effects of material strength in one dimensional 

shocks, it is common to assume a uniaxial strain state in an elastic solid on the 

verge of yielding. Starting with Equation (C.9) in Appendix C and substituting the 

uniaxial strain, 11ε  ( 11
0

1 v
v

ε = − ) where appropriate results in various forms for the 

stresses and pressure: 

 ( )11 112σ µ λ ε= +  (D.7)
 

22 33 11 11 112 1
λ νσ σ λε σ σ
µ λ ν

⎛ ⎞ ⎛ ⎞= = = = ⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠
 (D.8)

 11 22 11
11

2 1 2
3 3 3 1 3
kkp σ σ σ σ ν µ λ ε

ν
+ − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (D.9)

 

Now consider the J2 yield condition, / /
0

3
2 ij ij Yσ σ ≤  , taken from simple uniaxial 

stress tests. The deviatoric stresses, /
ijσ , are calculated from the principal 

stresses and pressures, /
ij ij ijpσ σ δ= + : 

 
( )/ 11 22

11 11 11 22
2 2

3 3
σ σσ σ σ σ+⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 (D.10)

 
 ( )/ / 11 22

22 33 22 22 11
2 1

3 3
σ σσ σ σ σ σ+⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

  (D.11)

 

Equations (D.10) and (D.11) are then substituted into the J2 yield condition: 

 
( ) ( )

2 2

11 22 22 11 11 22
3 2 12
2 3 3

σ σ σ σ σ σ
⎡ ⎤⎛ ⎞ ⎛ ⎞− + − = −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (D.12)
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11 22 11 11 11 0

1 2
1 1

Yν νσ σ σ σ σ
ν ν

−⎛ ⎞ ⎛ ⎞− = − = ≤⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (D.13)

 

The Hugoniot elastic limit ( HELσ ) is the stress in the direction of the shock at initial 

yield.  

 
11 0

1At yield, 
1 2HEL Yνσ σ

ν
−⎛ ⎞≡ = ⎜ ⎟−⎝ ⎠

 (D.14)

 ( )11 11 22 0
2 2
3 3

p Yσ σ σ− = − =  (D.15)

 

For many metals, the value of the Poisson ratio is on the order of 0.25 to 0.33, 

resulting in HELs on the order of 1.5 to 2.0 0Y . At high pressures, the difference 

between the  11σ  and p  becomes relatively small and the pressure-volume 

relationship tends to dominate material response.


